pthreads and Solaris threads:
A comparison oftwo userlevelthreads APIs

Early Access Edition (May 1994);
pthreadsBased on POSIX1003.4a/D8

\ A

2550 Garcia At %
Motmt:irr?:/ievwfrglli 94043 @% MnSO
A Sun Microsystems, Inc. Business

Part No: 8xX-xxxx-xx
Revision A, May 1994

ety
Please
Recycle

0 1993 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyrightand distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc. and the University of California, respectively. Third-party font software in this product is protected by
copyright and licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Sun Microsystems Computer Corporation, the Sun Microsystems Computer
Corporation logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks
or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc.. All other product names mentioned herein are the trademarks of
their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents

1. Introduction.......... ... ittt 5
2. pthreads Features Overviewun.n.. 7
2.1 pthreads Attribute Objects 7

2.2 Cancellation. i 8

23 Scheduling...........oo i 10

24 Conclusion. 12

3. APIComparison Summary.........covviiiieiinnennnnn. 13
3.1 InterfacesSummary 13

4. API ComparisonDetailsocoiiiiiiia. 17
4.1 pthreads Attributes Objects......................... 17
4.1.1 Thread Attributes.......... oL 18

4.1.2 Mutex Attributes. oL 21

4.1.3 Condition Variable Attributes.................. 22

4.2 Thread Functions 24
421 Thread Creation............ ..., 24

iii

iv

4.2.2 Managing Threads Priorities...................
423 ThreadJoin.......
424 Thread SpecificData..........................
4.2.5 Other thread functions........................
43 Mutex Functions........... ... i,
4.4 Condition Variable Operations......................
4.5 Semaphore Operationso,
4.6 New pthreads Functions
4.6.1 Cancellation............ .. oo,
4.6.2 Thread related functions
4.7 Functions in Solaris threads but NOT in pthreads.
4.7.1 Thread related functions
4.7.2 Readers/Writer Locks
4.8 Process creation (fork)

4.9 Building applications............... .. .o i

pthreads and Solaris threads: A comparison—May 1994

Introduction 1

pthreads is a POSIX API (draft) standard that allows the creation of programs with
multiple threads of control in a process. The SunSoft Early Access implementation of
pthreads is based on Draft 8 of the POSIX 1003.4a pthreads standard. SunSoft
currently supports a threads API known as Solaris threads. The intent of this
document is two fold:

® It is an aid to programmers already familiar with Solaris threads who would like to
begin using the pthreads API or who would like to convert from Solaris threads to
pthreads.

® It highlights the differences between pthreads and Solaris threads so that users can
choose one API, the other, or both, based on the functionality offered.

It is assumed that readers are proficient in threads programming so the question of
method is not addressed. It is meant to be used in conjunction with other supporting
documentation such as the pthreads UNIX man pages and The Guide to Multi-Thread
Programming (part of the Solaris Document Set).

pthreads and Solaris threads share a high level of correspondence in both API
action and syntax. However, there are several points of divergence. First,
function names are entirely different, though easily correlated. The pthreads
convention is to attach the prefix pthread_ to each descriptive function root
name.

There is not an exact match between the two APIs. pthreads include functions
not supported in the Solaris interface; Solaris threads supports functions not
found in pthreads. For those functions that do match, the associated arguments
may not - though the information content is effectively the same. In all cases

1-5

1-6

function argument types will be different. Two pthreads features not found in
Solaris threads, attribute objects and cancellation semantics, should be noted.
Feature differences are summarized here:

¢ Features in Solaris threads API but not in pthreads API
* Readers/writer locks
* Ability to create “daemon” threads
* Suspending and continuing a thread

* Setting concurrency (requesting a new LWP): determining concurrency
level

® Features in pthreads API but not in Solaris threads API
* Attribute objects
* Cancellation semantics

* Scheduling policies

The pthreads API and the Solaris threads API are two different solutions to the
same problem, namely building parallelism into application software. This
does not imply that they are mutually exclusive. There are no restrictions on
intermixing pthreads functions with Solaris functions (although style
restrictions should be considered). The strength of this approach is that
functionality not found in one can be used to enhance the other. Similarly, there
are no restrictions in running applications using pthreads exclusively with
applications using Solaris threads exclusively on the same system.

pthreads and Solaris threads: A comparison—May 1994

pthreads Features Overview 2

2.1 pthreads Attribute Objects

Threads entities, i.e. threads themselves and synchronization variables, can
exist in a number of different states. For instance a thread may be “detached”
or “non-detached”. Or the scope of a mutex may be inter-process or intra-
process. The convention in Solaris threads is to use flag arguments to specify
the state in which an entity is to be created. The pthreads approach is to
request the initialization of an attribute object, an opaque data type allocated
and returned (in a default state) by a function call. An attribute type is defined
for each relevant threads entity. Any number of attribute objects of a given type
can be initialized.

When a function is called to create a threads entity (e.g. thread, mutex, etc.)
requiring state initialization, an argument points to an attribute object. When
the entity is created it is set to the state indicated by the attribute object. If
some state other than the default is needed, there are pthreads functions to set
the appropriate state in the attribute object.

There are two primary advantages to using attribute objects. First it adds to
code portability. There may be cases where supported attributes vary between
implementations. Even so, there will be no need to modify function calls that
create thread entities since the attribute object is hidden from the interface. If
the target port supports attributes not found in the current port, provision
must be made to manage the new attributes. This is an easy porting task
though, because attribute objects need only be initialized once in a well defined
location.

2-7

1]
N

2-8

2.2 Cancellation

The second advantage is that state specification in an application is simplified.
As an example, consider that several sets of threads may exist within a process,
each providing a separate service, each with its own state requirements. At
some point in the early stages of the application, a thread attribute object can
be initialized for each set. All future thread creations will then refer to the
attribute object initialized for that type of thread. The initialization phase is
simple and localized. Any future modifications can be made quickly and
reliably.

Attribute objects require attention at process exit time. When the object is
initialized, memory is allocated for it. This memory must be returned to the
system. Destructor function calls are provided to do this.

pthreads introduces the notion of cancelability to threads programming.
Cancellation is an option when all further operations of a related set of threads
are undesirable or unnecessary. The best recourse is simply to cancel all thread
action, restore things to a consistent state, and return to the point of origin.
One example might be an asynchronously generated cancel condition, for
example a user requesting the cancellation of some running application.
Another example might be the completion of a task undertaken by a number of
threads. One of the threads may ultimately complete the task while the others
continue to operate. Since they are serving no purpose at that point, the others
should be canceled.

There are dangers in performing cancellations. Mostly, they deal with properly
restoring invariants and freeing shared resources. If some thread is canceled
without due care, it may leave a mutex in a locked state, leading to deadlock
conditions. Or it may leave a region of memory allocated with no means of
identification and therefore no way to free it.

pthreads specifies a cancellation interface that permits or forbids cancellation
programmatically. It also allows the scope of cancellation handlers, which
provide clean up services, to be defined so that they are sure to operate when
and where intended.

pthreads and Solaris threads: A comparison—May 1994

2

Cancellations may occur under three different circumstances. They may occur
1) asynchronously, 2) at various points in the execution sequence as defined by
the standard, or 3) at discrete points specified by the application. In all cases
care must be taken so that resources and state are restored to a condition
consistent with the point of origin.

A cancellation is effected by calling the function pthread_cancel() with a
thread ID as an argument. How the cancellation request is treated depends on
the state of the target thread.Two functions, pthread_setcancelstate()

and pthread_setcanceltype(), determine that state.

pthread_setcanceltype() can set the calling thread’s state to
PTHREAD_CANCEL_DEFERRED or to
PTHREAD_CANCEL_ASYNCHRONOUS. pthread_setcancelstate()

sets the calling thread state to either PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE.

If the state of the cancellation target is PTHREAD_CANCEL_DISABLE, then all
cancellation requests to that target are held pending. If the state is set to
PTHREAD_CANCEL_ENABLE, then the cancellation behavior depends on the
sense of the cancel type. If the cancel type is
PTHREAD_CANCEL_ASYNCHRONOUS, then receipt of a

pthread_cancel() call will result in an immediate cancellation. If, on the
other hand, the cancel type is PTHREAD_CANCEL_DEFERED, then
cancellation will not occur until the thread reaches a cancellation point.

A cancellation point can be established in a thread by inserting the function
call pthread_testcancel() . When this function is executed, and if a
cancellation is pending, then pthread_testcancel() will not return.
Otherwise, it has no effect.

In addition to the programmatically determined pthread_testcancel()

call, the pthreads standard specifies a number of cancellation points. These
include threads waiting in pthread_cond_wait() and
pthread_cond_timedwait() , threads waiting for the termination of another
thread in pthread_join() , and threads blocked on sigwait() . There are
also a number of standard library calls that act as cancellation points. In
general these are functions in which threads may block.

In order to restore conditions to a state consistent with that at the point of
origin, e.g. clean up allocated resources and restore invariants, pthreads
specifies the use of cleanup handlers. Two functions,

pthreads Features Overview 2-9

1]
N

2.3 Scheduling

2-10

pthread_cleanup_push() and pthread_cleanup_pop() , are used to
manage the handlers. pthread_cleanup_push() pushes a cleanup handler
onto a cleanup stack (FIFO). pthread_cleanup_pop() pulls it off the stack.

If pthread_cleanup_pop() is called with a nonzero argument, then the
handler popped of the stack is executed; otherwise it is removed and
discarded. pthread_cleanup_pop() is effectively called with a nonzero
argument if a thread either explicitly of implicitly calls pthread_exit() or if
the thread accepts a cancel request.

Placement of cancellation points and the effects of cancellation handlers must
be based on an understanding of the application under consideration. A mutex
is explicitly not a cancellation point and should be held only the minimum
essential time.

Regions of asynchronous cancellation should be limited to sequences having
no external dependencies which could result in dangling resources or
unresolved state conditions. Care should be taken to restore cancellation state
when returning from some alternate, nested cancellation state. The interface
provides features to facilitate this restoration. pthread_setcancelstate()
preserves the current cancel state in a referenced variable;
pthread_setcanceltype() preserves the current cancel type in the same
way.

pthreads defines a policy and provides a mechanism for controlling the
scheduling of threads onto processors. There are two aspects to the scheduling
mechanism. One deals with setting the scope in which a scheduling policy
applies. The other specifies the policy within a given policy domain.

The scheduling scope of a thread can be either PTHREAD_SCOPE_SYSTEM or
PTHREAD_SCOPE_PROCESS. Threads with different scope state may coexist
on the same system and even in the same process. If
PTHREAD_SCOPE_SYSTEM is specified, then the set of threads for which this
is true compete for processor resources according to a single policy. If
PTHREAD_SCOPE_PROCESS is true, then all threads within a process which
share this state compete for processor resources according to a single policy.
Threads in other processes whose state is also PTHREAD_SCOPE_PROCESS

pthreads and Solaris threads: A comparison—May 1994

2

are independent of this policy and conform to their own. It should be noted
that creating a pthreads thread in the PTHREAD_SCOPE_SYSTEM is
equivalent to creating a Solaris thread in the THR_BOUND state.

There are three possible scheduling policies. They are SCHED_FIFO,
SCHED_RR, and SCHED_OTHER. SCHED_FIFO refers to a simple queue
scheduling sequencer. Each thread is assigned a priority level; a queue is
associated with each priority level. As threads at a given priority level become
runable, they are tagged on the tail of the queue. They move in turn to the
head of the queue where they are then scheduled onto the next available
processing element (assuming no higher priority threads).

SCHED_RR refers to a round-robin algorithm.The round-robin algorithm is the
same as the FIFO algorithm except that a time-quota is associated with each
thread. A running thread whose time-quota has expired moves to the tail of its
run queue.

Note - SCHED_OTHER is currently the only scheduling policy supported in
the SunSoft pthreads (POSIX) implementation. Solaris threads implementation
does not have multiple scheduling policies; it has only one default policy.
SCHED_OTHER policy in pthreads (POSIX) is same as the default policy now
supported in Solaris threads. Refer to the Solaris threads documentation for
details on this policy.

Implicit in both the FIFO and round-robin policies is the ability to deal with
priority inversion. Priority inversion occurs when some higher priority thread
blocks waiting on a resource held by a lower priority thread. This problem can
manifest when threads of different priority levels are competing for ownership
of a mutex. To mitigate priority inversion, pthreads defines three scheduling
classes for mutexes: PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT,
and PTHREAD_PRIO_PROTECT.

A mutex created with the PTHREAD_PRIO_NONE class attribute ignores
thread priority. A mutex created with PTHREAD_PRIO_INHERIT upgrades
the priority of the thread holding it if some other thread with a higher priority
is blocked on the mutex. The temporarily upgraded thread will run at the
priority level of the thread with the highest level that is currently blocked on
the mutex. This effect cascades as well, so that all threads of a lower priority
that are holding mutexes and thus blocking progress of a higher priority thread
will inherit the priority of the blocked thread.

pthreads Features Overview 2-11

1]
N

2.4 Conclusion

2-12

A mutex created with the PTHREAD_PRIO_PROTECT class is assigned a
priority level. Any thread that holds that mutex will inherit that priority as
long as its own priority is lower than the mutex priority. If a thread holds more
than one mutex initialized in the PTHREAD_PRIO_PROTECT state, it will
inherit the highest priority level indicated by any of the mutexes.

This priority inheritance policy applies in the context of FIFO or RR
scheduling.

Threads acquire scheduling states by first initializing a thread attribute object
and then creating a thread with a reference to that attribute object.
Traditionally, the convention when creating a thread is to have it inherit the
state of its parent. pthreads allows the priority assignment mode to be
configured by setting an attribute value. If the attribute object is set to
PTHREAD_INHERIT_SCHED, then the priority of the new thread will be
identical to the parent. If it is set to PTHREAD_EXPLICIT_SCHED, then state
is set according to that specified in the thread attribute object.

From a programming perspective, the pthreads API is effectively identical with
the Solaris threads API - with the notable exception of cancellation and
attribute use. Moving between environments is largely a matter of simple
substitution. For developers familiar with multi-threaded programming
techniques as used in Solaris threads, pthreads will offer no surprises.

pthreads and Solaris threads: A comparison—May 1994

o
1]

APIComparison Summary

3.1 Interfaces Summary

The following table compares the pthreads API and the Solaris thread API. If
the comparable interface is not available either in pthreads or Solaris thread, it
is indicated with the character ’-’. The parameter and the arguments are
different between pthreads and Solaris functions. Details of the pthreads
functions can be found in the man (3T) sections.

Note that the sem_ entries in the pthread column of the table (followed by
“POSIX 1003.4”) are part of the POSIX real time standard specification and not
part of pthreads.

Table 3-1POSIX Pthread and Solaris Thread comparison

pthread Solaris Thread
pthread_create() thr_create()
pthread_exit() thr_exit()
pthread_join() thr_join()
pthread_yield() thr_yield()
pthread_self() thr_self()
pthread_kill() thr_kill()
pthread_sigmask() thr_sigsetmask()
pthread_setschedparam() thr_setprio()
pthread_getschedparam() thr_getprio()

3-14

Table 3-1POSIX Pthread and Solaris Thread comparison

pthread

Solaris Thread

thr_setconcurrency()

thr_getconcurrency()

thr_suspend()

thr_continue()

pthread_key create()

thr_keycreate()

pthread_key delete()

pthread_setspecif ic()

thr_setspecif ic()

pthread_getspecif ic()

thr_getspecif ic()

pthread_once()

pthread_equal()

pthread_cancel()

pthread_testcancel()

pthread_cleanup_push()

pthread_cleanup_pop()

pthread_setcanceltype()

pthread_setcancelstate()

pthread_mutex_lock()

mutex_lock()

pthread_mutex_unlock()

mutex_unlock()

pthread_mutex_trylock()

mutex_trylock()

pthread_mutex_init() mutex_init()
pthread_mutex_destroy() mutex_destroy/()
pthread_cond_wait() cond_wait()

pthread_cond_timedwait()

cond_timedwait()

pthread_cond_signal()

cond_signal()

pthread_cond_broadcast()

cond_broadcast()

pthread_cond_init()

cond_init()

pthread_cond_destroy()

cond_destroy()

rwlock_init()

rwlock_destroy()

rw_rdlock()

rw_wrlock()

pthreads and Solaris threads: A comparison—May 1994

Table 3-1POSIX Pthread and Solaris Thread comparison

pthread

Solaris Thread

rw_unlock()

rw_tryrdlock()

rw_trywrlock()

sem_init() POSIX 1003.4 sema_init()
sem_destroy() POSIX 1003.4 sema_destroy()
sem_wait() POSIX 1003.4 sema_wait()

sem_post() POSIX 1003.4

sema_post()

sem_trywait() POSIX 1003.4

sema_trywait()

pthread_mutex_setprioceiling()

pthread_mutex_getprioceiling()

pthread_mutexattr_init()

pthread_mutexattr_destroy()

pthread_mutexattr_setpshared()

t ype argument in
cond_init()

pthread_mutexattr_getpshared()

pthread_mutexattr_setprioceiling()

pthread_mutexattr_getprioceiling()

pthread_mutexattr_setprotocol()

pthread_mutexattr_getprotocol()

pthread_condattr_init()

pthread_condattr_destroy()

pthread_condattr_getshared()

pthread_condattr_setshared()

t ype argument in
cond_init()

pthread_attr_init()

pthread_attr_destroy()

pthread_attr_getscope()

pthread_attr_setscope()

THR_BOUND fag in
thr_create()

pthread_attr_getstacksize()

pthread_attr_setstacksize()

st ack_si zeargumentin
thr_create()

API Comparison Summary

3-15

3-16

Table 3-1POSIX Pthread and Solaris Thread comparison

pthread

Solaris Thread

pthread_attr_getstackaddr()

pthread_attr_setstackaddr()

st ack_addr argumentin
thr_create()

pthread_attr_getdetachstate()

pthread_attr_setdetachstate()

THR_DETACH flag in
thr_create()

pthread_attr_getschedparam()

pthread_attr_setschedparam()

pthread_attr_getinheritsched()

pthread_attr_setinherisched()

pthread_attr_getschedpolicy()

pthread_attr_setsschedpolicy()

pthreads and Solaris threads: A comparison—May 1994

API Comparison Details -

This section presents a comparison of Solaris threads and phreads. Each
subsection includes a functional description and also details on converting an
existing Solaris call to the corresponding pthreads call.

4.1 pthreads Attributes Objects

pthreads entities, i.e. threads and synchronization objects, can each exhibit
more than one kind of behavior, determined by the state in which they are
created. The creation state is determined by referring to an attribute object, an
opaque data type that is initialized and configured under programmatic
control.

Attribute object types exist for threads, mutexes, and condition variables. The
object itself is supplied by the system; it cannot be directly modified by
assignments. The attributes supported by each type are defined by pthreads
and are invariant for an implementation. A set of functions is provided to
initialize, configure, and destroy each object type.

Once an attribute is initialized and configured, it has process wide scope. The
suggested method for using attributes is to configure all required state
specifications one time in the early stages of program execution. The
appropriate attribute object can then be referred to as needed by the pthreads
entity creation function.

4-17

1]
M

4.1.1 Thread Attributes

¢ Threads Attribute API
#include <pthread.h>
#include <sched.h>
int pthread_attr_init (pthread_attr_t *attr)
int pthread_attr_destroy (pthread_attr_t *attr)

int pthread_attr_setstacksize (pthread_attr_t *attr, size_t
stacksize)

int pthread_attr_getstacksize (pthread_attr_t *attr, size_t
*stacksize)

int pthread_attr_setstackaddr (pthread_attr_t *attr, size_t
stackaddr)

int pthread_attr_getstackaddr (pthread_attr_t *attr, size_t
*stackaddr)

int pthread_attr_setdetachstate (pthread_attr_t *attr, int
detachstate)

int pthread_attr_getdetachstate (pthread_attr_t *attr, int
*detachstate)

int pthread_attr_setscope (pthread_attr_t *attr, int scope)
int pthread_attr_getscope (pthread_attr_t *attr, int *scope)

int pthread_attr_setschedparam (pthread_attr_t *attr, const struct
sched_param *param)

int pthread_attr_getschedparam (pthread_attr_t *attr, struct
sched_param *param)

Table 4-1 Find the pthreads attribute function of interest. Follow right to the Go To
column. Go To the section indicated.

Attribute function (Go To)

Initialization UlInit/Destroy

Configure stack size OSet/Get Stack Size
Configure stack address USet/Get Stack Address
Configure detach state OSet/Get Detach State
Configure scope USet/Get Scope
Configure schedule policy [Set/Get Schedule Policy

4-18 pthreads and Solaris threads: A comparison—May 1994

M
1]

¢ Init/Destroy

¢ Set/Get Stack Size

threads attribute initialization

pthread_attr_init() initializes the attributes associated with this object to their
default values. The storage is allocated by the thread system during execution.
pthread_attr_destroy() removes that storage and the attribute object becomes

invalid.

The default values of attributes are:

® scope: PTHREAD_SCOPE_PROCESS - new thread will be an unbound
thread.

® detachstate: PTHREAD_CREATE_JOINABLE - new thread will be non
detached.

® stackaddr: NULL - new thread will have system allocated stack.
® stacksize: NULL - new thread will have system defined size of the stack.

® priority: NULL - new thread will inherit the parent thread’s priority.
pthread_attr_t attr;

ret = pthread_attr_init (&attr); /* initialize an attribute to
default value */

ret = pthread_attr_destroy (&attr); /* destroy an attribute */
Configure threads stack size attribute

The stacksize attribute defines the size of the stack in bytes the system will
allocate. The size should not be less than PTHREAD_STACK_MIN.

pthread_attr_t attr;
int size;
size = (PTHREAD_STACK_MIN + 0x1000);

ret=pthread_attr_setstacksize (&attr, size); /* settinganew size
*/

ret=pthread_attr_getstacksize (&attr, &size); /* getting the stack
size */

¢ Set/Get Stack Address Configure threads stack starting address attribute

The stackaddr attribute defines the base of thread’s stack. If set to non-null
(NULL is default) value system will initialize stack at that address.

pthread_attr_t attr;
void *base;

API Comparison Details 4-19

4-20

base = (void *) malloc (PTHREAD_STACK_MIN + 0x1000);

ret = pthread_attr_setstackaddr (&attr, base); /* setting a new
address */

ret = pthread_attr_getstackaddr (&attr, base); /* getting the stack
address */

¢ Set/Get Detach State Configure threads detach state

¢ Set/Get Scope

A detachstate of PTHREAD_CREATE_DETACHED signifies the same behavior
as a THR_DETACH flag would have in thr_create () call, that is a detached
thread. A detachstate of PTHREAD_CREATE_JOINABLE is equivalent to non-
detached thread or a thread which can be joined upon its termination.

pthread_attr_t attr;
int detachstate;

ret = pthread_attr_getdetachstate (&attr, &detachstate); /* get
detachstate of thread */

ret=pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
ret=pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_JOINABLE);

Configure threads scope attribute

A pthreads scope attribute set to PTHREAD_SCOPE_SYSTEM signifies the
same behavior the THR_BOUND flag would have in thr_create () call, that is a
bound thread. If set to PTHREAD_SCOPE_PROCESS, an unbound thread will
be created.

pthread_attr_t attr;

int scope;

ret = pthread_attr_getscope (&attr, &scope); /* get scope of thread

*/

ret = pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM); /*bound

thread */

ret = pthread_attr_setscope (&attr, PTHREAD_SCOPE_PROCESYS);
/*unbound thread */

¢ Set/Get Schedule Policy Configure threads scheduling attribute

Scheduling parameters are defined in the param structure. Currently, only
priority is supported. The newly created thread will run with the configured
priority.

pthread_attr_t attr;

pthreads and Solaris threads: A comparison—May 1994

M
1]

int newprio;
sched_param param;
newprio = 30;

param.sched_priority = newprio; /* set the priority, others are
unchanged */

ret = pthread_attr_setschedparam (&tattr, ¶m); /* setting the
new scheduling param */

ret = pthread_attr_getschedparam (&tattr, ¶m); /* get existing
scheduling param */

4.1.2 Mutex Attributes

¢ Mutex Attribute API

¢ Init/Destroy

#include <pthread.h>
int pthread_mutexattr_init (pthread_mutexattr_t *attr)
int pthread_mutexattr_destroy (pthread_mutexattr_t *attr)

int pthread_mutexattr_setpshared (pthread_mutexattr_t *attr, int
pshared)

int pthread_mutexattr_getpshared (pthread_mutexattr_t *attr, int
*pshared)

Table 4-2 Find the pthreads attribute function of interest. Follow right to the Go To
column. Go To the section indicated.

Attribute function (Go To)
Initialization UlInit/Destroy
Configure scope Set/Get Scope

Initialize a mutex attribute object

pthread_mutexattr_init() initializes the attributes associated with this object to
their default values. The storage is allocated by the thread system during
execution. pthread_mutexattr_destroy() removes that storage and the attribute
object becomes invalid.

The default values of attributes are:

¢ pshared: PTHREAD_SHARE_PRIVATE - initialized mutex can be used
within a process.

API Comparison Details 4-21

1]
M

pthread_mutexattr_t mattr;

ret=pthread_mutexattr_init(&mattr); /*initialize an attribute to
default value */

ret = pthread_mutexattr_destroy (&mattr); /* destroy an attribute */
¢ Set/Get Scope Configure the scope of a mutex

The scope of a mutex variable can be either process private or system wide. If
the mutex is created in the PTHREAD_ SHARE PROCESS state and it exists in
shared memory, it can be shared among threads from more than one process.
This is equivalent to the USYNC_PROCESS flag in mutex_init ().

pthread_mutexattr_t mattr;
int pshared,;

ret = pthread_mutexattr_getpshared (&mattr, &pshared); /* get
pshared of mutex */

ret=pthread_mutexattr_setpshared (&mattr, PTHREAD_SHARE_PROCESS);
ret=pthread_mutexattr_setpshared (&mattr, PTHREAD_SHARE_PRIVATE);

4.1.3 Condition Variable Attributes

¢ Condition Variable Attribute API
#include <pthread.h>
int pthread_condattr_init (pthread_condattr_t *attr)
int pthread_condattr_destroy (pthread_condattr_t *attr)

int pthread_condattr_setpshared (pthread_condattr_t *attr, int
pshared)

int pthread_condattr_getpshared (pthread_condattr_t *attr, int
*pshared)

Table 4-3 Find the pthreads attribute function of interest. Follow right to the Go To
column. Go To the section indicated.

Attribute function (Go To)
Initialization OInit/Destroy
Configure scope OSet/Get Scope

4-22 pthreads and Solaris threads: A comparison—May 1994

M
1]

¢ Init/Destroy

¢+ Set/Get Scope

Initialize a condition variable attribute object

pthread_condattr_init() initializes the attributes associated with this object to
their default values. The storage is allocated by the thread system during
execution. pthread_condattr_destroy() removes that storage and the attribute
object becomes invalid.

The default values of attributes are:

® pshared: PTHREAD_SHARE_PRIVATE - initialized condition variable can
be used within a process.

pthread_condattr_t cattr;

ret = pthread_condattr_init (&cattr); /* initialize an attribute to
default value */

ret = pthread_condattr_destroy (&cattr); /* destroy an attribute */
Configure the scope of a condition variable

The attribute pshared defines the synchronization scope of the condition
variable initialized with this attribute object. PTHREAD_SHARE_PRIVATE
results in the same behavior that the USYNC_THREAD flag would have in a
cond_init () call, that is a local condition variable.
PTHREAD_SHARE_PROCESS is equivalent to global condition variable.
pthread_condattr_t cattr;

int pshared;

ret=pthread_condattr_getpshared (&cattr, &pshared);/*getpshared
of cond */

ret = pthread_condattr_setpshared (&cattr, PTHREAD_SHARE_PROCESS);
/* all processes */

ret = pthread_condattr_setpshared (&cattr, PTHREAD_SHARE_PRIVATE);
/* within a process */

API Comparison Details 4-23

-+

4.2 Thread Functions

4-24

Thread functions are defined in the POSIX.4a (1003.4a) specifications. These
functions are standard and similar to those provided in the Solaris threads
implementation. Changing from Solaris threads to pthreads is as trivial as
changing thr_ prefix to pthread_ in most of the cases.

4.2.1 Thread Creation

¢ Solaris API
#include <thread.h>

int thr_create (void * stkaddr, size_t stksize, void *(*func) (void
*), (void *arg), long flags, thread_t *tid)

¢ pthreads API
#include <pthread.h>

int pthread_create (pthread_t *tid, pthread_attr_t *attr, void
*(*func) (void *), void *arg);

The use of attribute objects to specify the state in which a new thread is created
is the primary difference between the Solaris and the pthreads thread creation
interface. In general an attribute is initialized and then set to reflect the desired
thread state. When the thread is created, a reference is made to the attribute
object with the desired state specification.

In the examples below, a new attribute object is initialized and set for each
case. In practice, a group of attribute objects - one for each needed state
behavior - should be set up one time and then referenced as needed.

Table 4-4 Find the argument entries of interest. Follow right across to the Go
To column. Go to the section below indicated by the Go To entry.

thr_create (stkaddr, stksize, (*func) (), *arg, flag, *tid) (Go To)
NULL NULL NULL [ldefault
THR_BOUND Obound
THR_DETACHED [ldetached
NULL si ze [stksize
st ackbase NULL [Istkbase
st ackbase si ze Ostksize&base

pthreads and Solaris threads: A comparison—May 1994

M
1]

¢ default

¢ bound

¢ detached

¢ stksize

Creating a thread with all default values

A default thread is created unbound, non detached, with default stack and
stack size, and it inherits the parent’s priority. Creating a thread using a NULL
attribute argument has the same effect as using a default attribute. Both will
create a default thread. When ‘tattr’ is initialized, it acquires the default
behavior.

pthread_attr_t tattr;

pthread_t tid;

int ret;

ret = pthread_create (&tid, NULL, func, arg); /* default behavior*/
OR

ret = pthread_attr_init (&tattr); /* initialized with default
attributes */

ret=pthread_create (&tid, &tattr, func, arg); /* default behavior*/

Creating a bound thread
pthread_attr_t tattr;
pthread_t tid;

int ret;

ret = pthread_attr_init (&tattr); /* initialized with default
attributes */

ret=pthread_attr_setscope (&tattr, PTHREAD_SCOPE_SYSTEM);/*BOUND
behavior */

ret = pthread_create (&tid, &tattr, func, arg);

Creating a detached thread
pthread_attr_t tattr;

pthread_t tid;

int ret;

ret = pthread_attr_init (&tattr); /* initialized with default
attributes */

ret = pthread_attr_setdetachstate (&tattr,
PTHREAD_THREAD_DETACHED);

ret = pthread_create (&tid, &tattr, func, arg);

Creating a thread with a custom stack size

pthread_attr_t tattr;

API Comparison Details 4-25

4-26

¢ stkbase

¢ stksize&base

pthread_t tid;

int ret;

void *stackbase;

int size = PTHREAD_MIN_STACK + 0x1000;

ret = pthread_attr_init (&tattr); /* initialized with default
attributes */

ret = pthread_attr_setstacksize (&tattr, si ze); /* setting the size
of the stack also */

ret = pthread_create (&tid, &tattr, func, arg); /* only size
specified */

Creating a thread with a custom stack starting address
pthread_attr_t tattr;

pthread_t tid;

int ret;

void *stackbase;

stackbase = (void *) malloc (size);

ret = pthread_attr_init (&tattr); /* initialized with default
attributes */

ret=pthread_attr_setstackaddr (&tattr, st ackbase); /* setting the
base address in the attribute */

ret = pthread_create (&tid, &tattr, func, arg); /* only address

specified */

Creating a thread with a custom stack address & stack size
pthread_attr_t tattr;

pthread_t tid;

int ret;

void *stackbase;

int size = PTHREAD_MIN_STACK + 0x1000;

stackbase = (void *) malloc (size);

ret = pthread_attr_init (&tattr); /* initialized with default
attributes */

ret = pthread_attr_setstacksize (&tattr, si ze); /* setting the size
of the stack also */

ret=pthread_attr_setstackaddr (&tattr, st ackbase); /* setting the
base address in the attribute */

pthreads and Solaris threads: A comparison—May 1994

M
1]

ret = pthread_create (&tid, &tattr, func, arg); /*address and size
specified */

4.2.2 Managing Threads Priorities

¢ Solaris API

¢ pthreads API

#include <thread.h>
int thr_getprio (thread_t tid, int *prio)
int thr_setprio (thread_t tid, int prio)

#include <pthread.h>
#include <sched.h>

int pthread_getschedparam (thread_t tid, int *policy, sched_param
*param)

int pthread_setschedparam (thread_t tid, int policy, sched_param
*param)

¢ Creating a thread with a specified priority

In Solaris -

In pthreads -

In Solaris threads, if a thread is to be created with a priority other than its
parents, it is created in SUSPEND mode. While suspended, the threads priority
is modified using the thr_setprio() function call; then it is continued.

thread_t tid;
int ret;
int newprio = 20;

ret = thr_create (NULL, NULL, func, arg, THR_SUSPEND, &tid); /*
suspended thread creation */

ret = thr_setprio (tid, newprio); /* set the new priority of
suspended child thread */

ret=thr_continue (tid); /* suspended child thread starts executing
with new priority */

API Comparison Details 4-27

4-28

In pthreads, the user can set the priority attribute before creating the thread.
The child thread is created with the new priority specified in the sched_param
structure. The sched_param structure contains other scheduling information. It
is always a good idea to get the existing parameters, change the priority and
again set it.

#include <sched.h>

pthread_attr_t tattr;

pthread_t tid;

int ret;

int newprio = 20;

sched_param param;

ret = pthread_attr_init (&tattr); /* initialized with default
attributes */

ret = pthread_attr_getschedparam (&tattr, & par am); /* safe to get
existing scheduling param */

param.sched_priority = newpr i o; /* set the priority, others are
unchanged */

ret = pthread_attr_setschedparam (&tattr, & par am); /* setting the
new scheduling param */

ret=pthread_create (&tid, &tattr, func, arg); /* with new priority
specified */

Another way of creating a thread with a priority different from its parent is to
change the parent thread’s priority before thread create (so that it inherits the
new priority) and then restore the parents’s priority afterwards. Getting and
setting the priority of an existing thread is described below.

¢ Modifying the priority of an existing thread

Two pthreads functions are provided to deal with pthreads priority.
pthread_getschedparam() gets the policy of the target thread and its associated
scheduling parameters. pthread_setschedparam() sets the policy of the target

pthreads and Solaris threads: A comparison—May 1994

-

¢ Getting priority
In Solaris -

In pthreads -

¢ Setting priority
In Solaris -

thread and its associated scheduling parameters. In the current implementation
only the SCHED_OTHER scheduling policy is supported; the only scheduling
parameter is priority.

Table 4-5 Find the pthreads attribute function of interest. Follow right to the Go To
column. Go To the section indicated.

Attribute function (Go To)
Finding the current priority UGetting priority

Changing the priority of an existing thread [Setting priority

thread_t tid;
int ret;
int priority;

ret = thr_getprio (tid, &priority); /* returns priority of target
thread tid */

pthread_t tid;

int ret;

sched_param param;
int priority;

int policy;

ret = pthread_getschedparam (tid, &policy, ¶m); /* scheduling
parameters of target thread */

priority=schedparam.sched_priority;/*sched_priority containsthe
priority of the thread */

thread_t tid;
int ret;
int priority;

ret = thr_setprio (tid, priority); /* returns priority of target
thread tid */

API Comparison Details 4-29

1]
M

In pthreads -
pthread_t tid;
int ret;
sched_param param;
int priority;

schedparam.sched_priority = priority; /* sched_priority will be the
priority of the thread */

policy = SCHED_OTHER; /* only supported policy, others will result
in ENOTSUP */

ret = pthread_setschedparam (tid, policy, param); /* scheduling
parameters of target thread */

4.2.3 Thread Join

¢ Solaris API

#include <thread.h>

int thr_join (thread_t tid, thread_t *departedid, int *status)
¢ pthreads API

#include <pthread.h>

int pthread_join (thread_t tid, int *status)

Table 4-6 Find the pthreads attribute function of interest. Follow right to the Go To
column. Go To the section indicated.

Attribute function (Go To)
Joining a specific thread UJoin specific

Joining any thread OJoin any

¢ Join specific
In Solaris -
thread_t tid;
thread_t departedid,;
int ret;
int status;

4-30 pthreads and Solaris threads: A comparison—May 1994

M
1]

In pthreads -

¢ Join any
In Solaris -

In pthreads -

ret=thr_join (tid, &departedid, &status); /*waitingtojointhread
“tid” with status */

ret = thr_join (tid, &departedid, NULL); /* waiting to join thread
“tid” without status */

ret = thr_join (tid, NULL, NULL); /* waiting to join thread “tid”
without return id and status */

In pthreads, there is no concept of returning the thread id of terminated thread.
pthread_t tid;

int ret;

int status;

ret = pthread_join (tid, &status); /* waiting to join thread “tid”
with status */

ret = pthread_join (tid, NULL); /* waiting to join thread “tid”
without status */

thread_t tid;
thread_t departedid,;
int ret;

int status;

ret = thr_join (NULL, &departedid, &status); /* waiting to join
thread “tid” with status */

By indicating NULL as thread id in the Solaris thr_join(), a join will take place
when any non detached thread in the process exits. The departedid will indicate
the thread id of exiting thread.

In pthreads, there is no provision for this functionality. Using NULL as a
thread id in pthread_join() will result in invalid argument (EINVAL) error.
There is no departedid argument which can be used to return an exited thread
id.

4.2.4 Thread Specific Data

¢ Solaris API

API Comparison Details 4-31

4-32

¢ pthreads API

¢+ Key create
In Solaris -

In pthreads -

#include <thread.h>

int thr_keycreate (thread_key_t *keyp, void (*destructor) (void *))
int thr_setspecific (thread_key _t key, void *value)

int thr_getspecific (thread_key _t key, void **value)

#include <pthread.h>

int pthread_key_create (pthread_key_t *keyp, void (*destructor)
(void *))

int pthread_setspecific (pthread_key_t key, void *value)
void * pthread_getspecific (pthread_key _t key)
int pthread_key_delete (pthread_key _t key)

Table 4-7 Find the pthreads attribute function of interest. Follow right to the Go To
column. Go To the section indicated.

Attribute function (Go To)
Creating a thread specific data key UKey create
Finding the thread specific data OTSD get
Setting the thread specific data UTSD set
Deleting the thread specific data key OKey delete

thread_key_t mykey;
int ret;

ret=thr_keycreate (&mykey, NULL); /* key create without destructor
*/

ret = thr_keycreate (&mykey, dest_func); /* key create with
destructor */

pthread_key_t mykey;
int ret;

ret = pthread_key_create (&mykey, NULL); /* key create without
destructor */

pthreads and Solaris threads: A comparison—May 1994

M
1]

¢ TSD get
In Solaris -

In pthreads -

¢ TSD set

In Solaris -

In pthreads -

¢+ Key delete

ret = pthread_key_create (&mykey, dest_func); /* key create with
destructor */

thread_key_t mykey;
void *val;
int ret;

ret = thr_getspecific (mykey, &val); /* mykey is previously created
key */

pthread_key_t mykey;
void *val;

val = pthread_getspecific (mykey); [* mykey is previously created
key */

thread_key_t mykey;
void *val;
int ret;

ret = thr_setspecific (mykey, val); /* mykey is previously created
key */

pthread_key_t mykey;
void *val;
int ret;

ret = pthread_setspecific (mykey, val); /* mykey is previously
created key */

pthreads provides a means to destroy an existing thread specific data key. This
can be used to cause an error return when trying to access some thread specific
data set which is no longer valid. There is no comparable function in Solaris.

API Comparison Details 4-33

4-34

Once a key has been deleted any reference to it via pthread_setspecific() or
pthread_getspecific() calls result in EINVAL error. It is the responsibility of the
programmer to free any thread specific resources prior to calling delete
function. This function does not invoke any of the destructors.

pthread_key_t mykey;

int ret;

ret=pthread_key_delete (mykey); /*mykey is previously created key
*/

4.2.5 Other thread functions

¢ Solaris API

¢ pthreads API

¢ Thread exit
In Solaris -

In pthreads -

#include <thread.h>

#include <signal.h>

void thr_exit (int *status)

thread_t thr_self ()

int thr_sigsetmask (int how, const sigset_t *new, sigset_t *old)
int thr_yield ()

int thr_kill (thread_t, int sig)

#include <pthread.h>

#include <signal.h>

void pthread_exit (int *status)

thread_t thread_self ()

int pthread_sigmask (int how, const sigset_t *newp, sigset_t *oldp)
int pthread_yield ()

int pthread_kill (pthread_t, int sig)

int status;

thr_exit (&status); /* exit with status */

int status;

pthread_exit (&status); [* exit with status */

pthreads and Solaris threads: A comparison—May 1994

M
1]

¢ Thread identification

In Solaris -

In pthreads -

thread_t tid;
tid = thr_self();

pthread_t tid;
tid = pthread_self();

¢ Setting a thread signal mask

In Solaris -

In pthreads -

int ret;

sigset_t old, new;

ret=thr_sigsetmask (SIG_SETMASK, &new, &old);
*/

ret = thr_sigsetmask (SIG_BLOCK, &new, &old);
re =thr_sigsetmask (SIG_UNBLCOK, &new, &old);

int ret;
sigset_t old, new;

ret = pthread_sigmask (SIG_SETMASK, &new, &old);
mask */

ret = pthread_sigmask (SIG_BLOCK, &new, &old);

ret = pthread_sigmask (SIG_UNBLCOK, &new, &old);
*/

¢ Yielding a thread run status

In Solaris -

In pthreads -

¢ Killing a thread
In Solaris -

In pthreads -

thr_yield();

pthread_yield();

int sig;
thread_t tid;

[*settinganewmask

/* blocking mask */
/* unblocking mask */

[* setting a new

[* blocking mask */

/* unblocking mask

thr_kill (tid, sig); [* kill target thread with sig signal */

API Comparison Details

4-35

1]
M

int sig;
pthread_t tid;
pthread_kill (tid, sig); [* kill target thread with sig signal */

4-36 pthreads and Solaris threads: A comparison—May 1994

M
1]

4.3 Mutex Functions

¢ Solaris API

¢ pthreads API

pthreads defines the use of mutex synchronization variables. Changing from
Solaris to pthreads is as trivial as adding the prefix pthread_. All the mutex
functions have similar arguments except for mutex initialization.

#include <synch.h>

int mutex_init (mutex_t *mp, int type, void *arg)
int mutex_destroy (mutex_t *mp)

int mutex_lock (mutex_t *mp)

int mutex_unlock (mutex_t *mp)

int mutex_trylock (mutex_t *mp)

#include <pthread.h>

int pthread_mutex_init (pthread_mutex_t *mp, pthread_mutexattr_t
*attr)

int pthread_mutex_destroy (pthread_mutex_t *mp)
int pthread_mutex_lock (pthread_mutex_t *mp)

int pthread_mutex_unlock (pthread_mutex_t *mp)
int pthread_mutex_trylock (pthread_mutex_t *mp)

¢ Initialization of a mutex with intra-process scope

In Solaris -

In pthreads -

mutex_t mp;
int ret;

ret = mutex_init (&mp, USYNC_THREAD, 0); /* to be used within this
process only */

If a mutex variable is to be shared within a process, it can be initialized in two
different ways. One way is to call the init function with attr as NULL. The
second is to use an attribute object mattr which has been initialized with the
default value of the pshared attribute (PTHREAD_PROCESS_PRIVATE).

It is also possible to explicitly set the pshared attribute to
PTHREAD_PROCESS_PRIVATE in a previously initialized mattr.

API Comparison Details 4-37

1]
M

These states are equivalent to the USYNC_THREAD state in Solaris threads.
pthread_mutex_t mp;

int ret;

pthread_mutexattr_t mattr;

ret = pthread_ mutex_init (&mp, NULL); /* Using a NULL argument to
specify the default creation state */

OR
ret = pthread_mutexattr_init (&mattr);

ret=pthread_mutex_init(&mp, &mattr); /*Usinganattribute object
initialized and left in the default state */

OR

ret = pthread_mutexattr_setpshared (&mattr,
PTHREAD_PROCESS_PRIVATE);

ret = pthread_mutex_init (&mp, &mattr); /* Explicitly setting the
attribute object to indicate PTHREAD_PROCESS_PRIVATE */

¢ Initialization of a Mutex with inter-process scope

In Solaris -
mutex_t mp;
int ret;
ret = mutex_init (&mp, USYNC_PROCESS, 0); /* to be used among all
processes */
In pthreads -

If a mutex variable is to be shared among processes it is initialized using the
attribute object mattr which has been set with the value
PTHREAD_PROCESS_PROCESS. This is equivalent to the USYNC_PROCESS
state in Solaris threads.

mutex_t mp;

int ret;

pthread_mutexattr_t mattr;

ret = pthread_mutexattr_init (&mattr);

ret = pthread_mutexattr_setpshared (&mattr,
PTHREAD_PROCESS_SHARED);

ret = pthread_mutex_init (&mp, &mattr); /* to be used among all
processes */

¢ Destroying a Mutex

4-38 pthreads and Solaris threads: A comparison—May 1994

M
1]

In Solaris -

In pthreads -

¢ Mutex lock
In Solaris -

In pthreads -

¢ Mutex unlock
In Solaris -

In pthreads -

¢ Mutex trylock
In Solaris -

In pthreads -

mutex_t mp;
int ret;
ret = mutex_destroy(&mp); /* Mutex is destroyed */

mutex_t mp;
int ret;

ret = pthread_ mutex_destroy(&mp); [* Mutex is destroyed */

mutex_t mp;
int ret;
ret = mutex_lock (&mp); [* acquire the Mutex */

pthread_mutex_t mp;

int ret;

ret = pthread_ mutex_lock (&mp); [* acquire the Mutex */
mutex_t mp;

int ret;

ret = mutex_unlock (&mp); /* release the Mutex */

pthread_mutex_t mp;

int ret;

ret = pthread_ mutex_unlock (&mp); [* release the Mutex */
mutex_t mp;

int ret;

ret = mutex_trylock (&mp); [* try to grab Mutex */

pthread_mutex_t mp;

API Comparison Details 4-39

1]
M

int ret;
ret = pthread_ mutex_trylock (&mp); [* try to grab Mutex */

4-40 pthreads and Solaris threads: A comparison—May 1994

M
1]

4.4 Condition Variable Operations

¢ Solaris API

¢ pthreads API

pthreads condition variables are standard and similar to those provided in the
Solaris thread implementation. Changing from Solaris to pthreads is as trivial
as adding the prefix pthread_. All the mutex functions have similar arguments
except for mutex initialization.

#include <synch.h>

int cond_init (cond_t *cv, int type, int arg)

int cond_destroy (cond_t *cv)

int cond_wait (cond_t *cv, mutex_t *mp)

int cond_timedwait (cond_t *cv, mutex_t *mp, timestruct_t abstime)
int cond_signal (cond_t *cv)

int cond_broadcast (cond_t *cv)

#include <pthread.h>

#include <time.h>

int pthread_cond_init(pthread_cond_t*cv, pthread_condattr_t*attr)
int pthread_cond_destroy (pthread_cond_t *cv)

int pthread_cond_wait (pthread_cond_t *cv, pthread_mutex_t *mp)

int pthread_cond_timedwait(pthread_cond_t*cv,pthread_mutex_t*mp,
timestruct_t abstime)

int pthread_cond_signal (pthread_cond_t *cv)
int pthread_cond_broadcast (pthread_cond_t *cv)

¢ Initialization of a condition variable with intra-process scope

In Solaris -

In pthreads -

cond_tcv;
int ret;

ret = cond_init (cv, USYNC_THREAD, 0); /* to be used within this
process only */

API Comparison Details 4-41

4-42

If a condition variable is to be shared within a process, it can be initialized in
two different ways. One way is to call the init function with attr as NULL. The
second is to use an attribute object cattr which has been initialized with the
default value of the pshared attribute (PTHREAD_PROCESS_PRIVATE).

It is also possible to explicitly set the pshared attribute to
PTHREAD_PROCESS_PRIVATE in a previously initialized cattr.

pthread_cond_t cv;
int ret;
pthread_condattr_t cattr;

ret = pthread_ cond_init (&cv, NULL); /* Using a NULL argument to
specify the default creation state */

OR
ret = pthread_condattr_t (&cattr);

ret=pthread_ cond_init (&cv, &cattr); /*Using an attribute object
initialized and left in the default state */

OR

ret = pthread_condattr_setpshared (&cattr,
PTHREAD_PROCESS_PRIVATE);

ret = pthread_cond_init (&cv, &cattr); [* Explicitly setting the
attribute object to indicate PTHREAD_PROCESS_PRIVATE */

¢ Initialization of a condition variable with inter-process scope

In Solaris -

In pthreads -

cond_t cv;
int ret;

ret = cond_init (&cv, USYNC_PROCESS, 0); [* to be used among all
processes */

If a condition variable is to be shared among processes it is initialized using the
attribute object cattr which has been set with the value
PTHREAD_PROCESS_PROCESS. This is equivalent to the USYNC_PROCESS
state in Solaris threads.

pthread_cond_t cv;

int ret;

pthread_condattr_t cattr;

ret = pthread_condattr_init (&cattr);

pthreads and Solaris threads: A comparison—May 1994

M
1]

ret = pthread_condattr_setpshared (&cattr, PTHREAD_PROCESS_SHARED);

ret = pthread_cond_init (&cv, &cattr);

processes */

¢ Destroying a condition variable

In Solaris -

In pthreads -

cond_tcv;
int ret;

ret = cond_destroy (&cv);

pthread_cond_t cv;
int ret;

ret=pthread_cond_destroy (&cv);
*/

¢ Condition variable wait

In Solaris -

In pthreads -

cond_t cv;
mutex_t mp;
int ret;

ret = cond_wait (&cv, &mp);

pthread_cond_t cv;
pthread_mutex_t mp;
int ret;

ret = pthread_cond_wait (&cv, &mp);

¢ Condition variable timedwait

In Solaris -

In pthreads -

cond_t cv;

mutex_t mp;
timestruct_t abstime;
int ret;

ret = cond_timedwait (&cv, &mp, &abstime);

variable */

pthread_cond_t cv;

API Comparison Details

[* to be used among all

/* Condition variable is destroyed */

/*Condition variable is destroyed

/* wait on condition variable */

/* wait on condition variable */

/* wait on condition

4-43

4-44

pthread_mutex_t mp;
timestruct_t abstime;
int ret;

ret = pthread_cond_timedwait (&cv, &mp, &abstime); [* wait on
condition variable */

¢ Condition variable signal

In Solaris -

In pthreads -

cond_tcv;
int ret;

ret = cond_signal (&cv); [* one condition variable is signaled */

pthread_cond_t cv;
int ret;

ret = pthread_cond_signal (&cv); /* one condition variable is
signaled */

¢ Condition variable broadcast

In Solaris -

In pthreads -

cond_tcv;
int ret;

ret=cond_broadcast(&cv); /*allcondition variables are signaled */

pthread_cond_t cv;
int ret;

ret = pthread_cond_broadcast(&cv); [* all condition variables are
signaled */

pthreads and Solaris threads: A comparison—May 1994

M
1]

4.5

Semaphore Operations

¢ Solaris API

¢+ POSIX.4 API

Semaphores are not defined in the POSIX.4a (pthreads) specifications, but they
are included in the POSIX.4 (realtime extensions) specifications. These
functions are standard and similar to those provided in Solaris thread
implementation. Changing from Solaris to the POSIX.4 standard is as trivial as
converting sema prefix to sem.

#include <synch.h>

int sema_init (sema_t *sp, unsigned int count, int type, void *arg)
int sema_destroy (sema_t *sp)

int sema_wait (sema_t *sp)

int sema_trywait (sema_t *sp)

int sema_post (sema_t *sp)

#include <semaphore.h>

int sem_init (sem_t *sp, int pshared, int value)
int sem_destroy (sem_t *sp)

int sem_wait (sem_t *sp)

int sem_trywait (sem_t *sp)

int sem_post (sem_t *sp)

¢ Initialization of a semaphore within intra-process scope

In Solaris -

In POSIX 4 -

sema_t sp;
int ret;

int count;
count = 4;

ret = sema_init (&sp, count, USYNC_THREAD, 0); /*to be used within
this process only */

In pthreads, if pshared is 0 then semaphore can be used by all the threads in a
process.

sem_t sp;
int ret;

API Comparison Details 4-45

4-46

int count = 4;
ret = sem_init (&sp, 0, count); /* to be used within this process
only */

¢ Initialization of a semaphore within inter-process scope

In Solaris -

In POSIX 4 -

sema_t sp;
int ret;

int count;
count = 4,

ret = sema_init (&sp, count, USYNC_PROCESS, 0); /*to be used among
all the processes */

In pthreads, if pshared is nonzero then a semaphore can be used by all the
processes.

sem_t sp;
int ret;
int count = 4;

ret=sem_init(&sp, 1, count); /*to be used among all the processes
*/

¢ Destroying a semaphore

In Solaris -

In POSIX 4 -

¢ Semaphore wait
In Solaris -

sema_t sp;
int ret;

ret = sema_destroy (&sp); /*semaphore is destroyed */

sem_t sp;
int ret;

ret = sem_destroy (&sp); [* semaphore is destroyed */

sema_t sp;
int ret;

ret = sema_destroy (&sp); [*wait for semaphore */

pthreads and Solaris threads: A comparison—May 1994

M
1]

In POSIX 4 -

¢ Semaphore trywait
In Solaris -

In POSIX 4 -

¢ Semaphore post
In Solaris -

In POSIX 4 -

sem_t sp;
int ret;
ret = sem_wait (&sp);

sema_t sp;
int ret;
ret = sema_trywait (&sp);

sem_t sp;
int ret;
ret = sem_trywait (&sp);

sema_t sp;
int ret;

ret = sema_post (&sp);
sem_t sp;

int ret;

ret = sem_post (&sp);

API Comparison Details

[* wait for semaphore */

[*try to wait for semaphore */

[* try to wait for semaphore*/

[*semaphore is posted */

/* semaphore is posted */

4-47

-+

4.6 New pthreads Functions

4.6.1 Cancellation
¢ Solaris API

This functionality is not supported in the Solaris threads.

¢ pthreads API
#include <pthread.h>
int pthread_cancel (pthread_t tid)
int pthread_setcanceltype (int type, int *oldtype)
int pthread_setcancelstate (int state, int *oldstate)
void pthread_cleanup_push (void (*routine) (void *), void *arg)
void pthread_cleanup_pop (int execute)
void pthread_testcancel()

¢ Cancelling a thread
pthread_t tid;
int ret;
ret = pthread_cancel (tid);

¢ Setting cancellation type of current thread

The cancellation type can be set to either deferred or in async mode. By default
when a thread is created, the cancellation type is set to deferred mode. In
deferred mode, the thread can be cancelled only at cancellation points. In async
mode, a thread can be cancelled any point during its execution. Use of async
mode is discouraged.

int oldtype;
int ret;

ret = pthread_setcanceltype (PTHREAD_CANCEL_DEFERED, &oldtype); I*
deferred mode */

ret = pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS,
&oldtype); [* async mode*/

¢ Setting cancellation state of current thread

4-48 pthreads and Solaris threads: A comparison—May 1994

-

¢ Cleanup handlers

Cancelability of a thread can be enabled or disabled. By default when a thread
is created, cancelability is enabled.

int oldstate;
int ret;

ret=pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, &oldstate); I*
enabled */

ret=pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,&oldstate); I*
disabled */

Cleanup handlers are pushed and popped in same lexical scope of a program.
They should always match; otherwise compiler errors will be generated.
Nonzero argument in pop function will remove the handler from stack and
execute it. If it is zero, then the handler is popped out without executing it.

ret = pthread_cleanup_push (func, arg); /* push the handler “func”
on cleanup stack */

ret=pthread_cleanup_pop(1); [*popthe“func” outof cleanup stack

and execute “func” */

ret = pthread_cleanup_pop (0); [* pop the “func” and DONT execute
“func” */

¢ Testing for a pending cancellation request

pthread_testcancel() provides a cancellation point during execution of a thread.
It should only be inserted in sequences where it is safe to cancel a thread. It is
effective when cancelability is enabled and in deferred mode. Calling this
function while cancelability is disabled has no effect.

pthread_testcancel();

4.6.2 Thread related functions

¢ Solaris API

¢ pthreads API

These functions are not supported in the Solaris threads.

#include <pthread.h>
int pthread_once (pthread_once_t *once, void (*func) (void))
int pthread_equal (pthread_t tid1, pthread_t tid2)

API Comparison Details 4-49

1]
M

¢ Calling a function once in multi-threaded process

A function can be called through pthread_once() to assures that it is executed
one time only in a multi-threaded program.This is useful where a particular
operation such as initialization of a mutex or creating a key should be done
once in the application. The once_control structure needs to be initialized using
PTHREAD_ONCE_INIT.

pthread_once_t once_control = PTHREAD_ONCE_INIT;
int ret;

ret = pthread_once (&once_control, func);

¢ Comparing two thread ids

pthread_t tid1, tid2
int ret;
ret = pthread_equal (tid1, tid2);

4-50 pthreads and Solaris threads: A comparison—May 1994

M
1]

4.7 Functions in Solaris threads but NOT in pthreads

Note — Users are free to interleave pthreads functions with Solaris functions.
No adverse effects will result from this mixing. This compatibility can be used
to supplement Solaris threads functionality with pthreads functionality, or vice
versa.

4.7.1 Thread related functions

4+ Solaris API

#include <thread.h>

int thr_suspend (thread_t tid)

int thr_continue (thread_t tid)

int thr_setconcurrency (int new_level)

int thr_getconcurrency (void)

¢ Suspending a thread

thr_suspend() suspends the specified thread. The target thread blocks until a
thr_continue is called. Signals can not awaken the suspended thread, they
remain pending until thread resume the execution. Calling this function for a
suspended thread will have no effect.

pthread_t tid as defined in pthreads is the same as thread_t tid in Solaris threads.
tid values can be used interchangeably either by assignment or through the use
of casts.

thread_t tid; /* tid from thr_create()*/

pthread_t ptid; [* pthreads equivalent of Solaris tid from thread
created with pthread_create()*/

int ret;
ret = thr_suspend (tid);

ret = thr_suspend ((thread_t) ptid); /* using pthreads ID variable
with a cast */

¢ Continuing a suspended thread

thr_continue() resumes the execution of the specified suspended thread.
Calling this function for a non-suspended thread will have no effect.

API Comparison Details 4-51

4-52

pthread_t tid as defined in pthreads is the same as thread_t tid in Solaris threads.
tid values can be used interchangeably either by assignment of through the use
of casts.

thread_t tid; /* tid from thr_create()*/

pthread_t ptid; [* pthreads equivalent of Solaris tid from thread
created with pthread_create()*/

int ret;
ret = thr_continue (tid);

ret = thr_continue ((thread_t) ptid) /* using pthreads ID variable
with a cast */

¢ Setting thread concurrency

thr_setconcurrency() provides a hint to the system about the required level of
concurrency in the application. The system ensures that a sufficient number of
threads are active so that the process continues to make progress.

int level;
int ret;
level = 5;

ret = thr_setconcurrency (level);

¢ Getting thread concurrency

thr_getconcurrency() returns the current level of concurrency in the process.
This number can be used to determine the desired level of concurrency.

int level;

level = thr_getconcurrency (void);

4.7.2 Readers/Writer Locks

¢ Solaris API

Readers/writer locks allow more than one thread at time to read a variable;
using this type of lock, only one thread at a time can access the variable to
modify it.

#include <synch.h>

int rwlock_init (rwlock_t *rwlp, int type, void *arg)
int rwlock_destroy (rwlock_t *rwlp)

int rw_rdlock (rwlock_t *rwip)

pthreads and Solaris threads: A comparison—May 1994

M
1]

int
int
int
int

rw_wrlock (rwlock_t *rwip)
rw_unlock (rwlock_t *rwlip)
rw_tryrdlock (rwlock_t *rwlip)
rw_trywrlock (rwlock_t *rwlip)

Initialization of a readers/writer lock with intra-process scope

rwlock_t rwip;

int ret;

ret=rwlock_init(&rwlp,USYNC_THREAD, 0); [*tobe usedwithin this
process only */

Initialization of a readers/writer lock with inter-process scope

rwlock_t rwlp;

int ret;

ret=rwlock_init (&rwlp, USYNC_PROCESS, 0); /*to be used among all
processes */

Destroying a readers/writer lock

rwlock_t rwlp;

int ret;

ret = rwlock_destroy(&rwip); /* rwlock is destroyed */

Readers/writer lock

rwlock_t rwlp;

int ret;
ret = rw_rdlock (&rwlp); [* acquire the rwlock for reading */
ret = rw_wrlock (&rwlp); * acquire the rwlock for writing */

Readers/writer unlock

rwlock_t rwlp;

int ret;

ret = rw_unlock (&rwip); [* release the rwlock */

Readers/writer trylock

rwlock_t rwlp;

int ret;

ret = rw_tryrdlock (&rwlp); [* try to grab rwlock for reading */
ret = rw_trywrlock (&rwip); /* try to grab rwlock for writing */

API Comparison Details 4-53

-

4.8 Process creation (fork)

It is important to note that the behavior of the fork() function call in pthreads is
the same as fork1() in Solaris threads. Both the fork() call in pthreads and the
fork1() call in Solaris creates a new process, duplicating only the calling thread
in the child process.

If fork() is called in Solaris threads, the complete process including all threads is
duplicated in the child process. No such functionality exists in pthreads.

To build an application using the pthreads fork(), the library libpthread.so
should be included during the link phase (i.e. -Ipthread). Current Solaris
threads users who want to move to the pthreads API can replace fork1() with
fork(); if they are using fork() (in the Solaris context) they will have to revise
their applications because there is no equivalent to fork() in pthreads.

¢ Fork API - All threads

In Solaris -

pid_t pid;

pid = fork ();
In pthreads -

Not supported.

¢ Fork API - Calling thread only

In Solaris -

pid_t pid;

pid = fork1 ();
In pthreads -

pid_t pid;

pid = fork ();

4-54 pthreads and Solaris threads: A comparison—May 1994

M
1]

4.9 Building applications

Table 4-8 Use this table to determine what header information and shared libraries are necessary to build an

application using pthreads or Solaris entities.

Function Build Info. Solaris thread POSIX pthreads
threads Include File thread.h pthread.h
Library to link libthread.so libpthread.so
mutexes Include File synch.h pthread.h
Library to link libthread.so libpthread.so
condition variables Include File synch.h pthread.h
Library to link libthread.so libpthread.so

semaphores Include File synch.h semaphore.h

Library to link libthread.so libposix4.so

¢ Linking with only pthreads functions

¢ Building applications with pthreads functions and semaphores

¢ Building applications with Solaris threads

To use only pthreads calls, link programs as follows:

cc -D_RENTRANT foo.c -Ipthread

To use pthreads and POSIX semaphores, link as follows:
cc -D_RENTRANT foo.c -Iposix4 -Ipthread

To use Solaris threads, link as follows:
cc -D_RENTRANT foo.c -lthread

¢ Building applications with Solaris threads and pthreads

To use Solaris threads and pthreads function calls in the same application, links

should be made as follows (see Note below):

cc -D_RENTRANT foo.c -lposix4 -lthread

OR

cc -D_RENTRANT foo.c -lposix4 -Ipthread

API Comparison Details

4-55

4-56

Note - Linking with libthread or libpthread provides you with all the
interfaces of pthreads as well as Solaris threads. The only difference is in the
definition of the fork() call. If the program is linked with libpthread, the
behavior of fork() is same as described in the POSIX.4a specification document.
In other words, fork() in pthreads behaves like fork1() in Solaris thread. There
is no interface in pthreads which is equivalent of fork() in Solaris.

pthreads and Solaris threads: A comparison—May 1994

References A

1. POSIX System Application Program Interface: Threads Extention [C
Language] POSIX 1003.4a Draft 8. Available from the IEEE Standards
Department.

2. UNIX man pages supplement man(3T). Solaris Documentation Set.

3. Guide to Multi-Thread Programming. Solaris Documentation Set.

A-57

1]
AN

A-58 pthreads and Solaris threads: A comparison—May 1994

)

% sun
microsystems

Sun Microsystems, Inc.

2550 Garcia Avenue

Mountain View, CA 94043

415 960-1300

FAX 415 969-9131

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 413 2666
Belgium: 32-2-759 5925
Canada: 416 477-6745
Finland: 358-0-502 27 00
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Ttaly: 039 60551

Japan: (03) 221-7021

Korea: 822-563-8700

Latin America: 415 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-831-5568
Singapore: 224 3388

Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

415 960-1300

Intercontinental Sales: 415 688-9000

