
Linux net�lter Hacking HOWTO

Rusty Russell, mailing list netfilter@lists.samba.org $Revision: 1.10 $ $Date: 2001/05/04 20:58:43 $

This document describes the net�lter architecture for Linux, how to hack it, and some of the major systems which

sit on top of it, such as packet �ltering, connection tracking and Network Address Translation.

Contents

1 Introduction 2

1.1 What is net�lter? . 3

1.2 What's wrong with what we had in 2.0 and 2.2? . 3

1.3 Who are you? . 4

1.4 Why does it crash? . 4

2 Where Can I Get The Latest? 5

3 Net�lter Architecture 5

3.1 Net�lter Base . 6

3.2 Packet Selection: IP Tables . 6

3.2.1 Packet Filtering . 6

3.2.2 NAT . 7

3.2.3 Packet Mangling . 7

3.3 Connection Tracking . 7

3.4 Other Additions . 7

4 Information for Programmers 7

4.1 Understanding ip_tables . 7

4.1.1 ip_tables Data Structures . 8

4.1.2 ip_tables From Userspace . 9

4.1.3 ip_tables Use And Traversal . 9

4.2 Extending iptables . 9

4.2.1 The Kernel . 9

4.2.2 Userspace Tool . 12

4.2.3 Using `libiptc' . 14

4.3 Understanding NAT . 15

4.3.1 Connection Tracking . 15

4.4 Extending Connection Tracking/NAT . 16

4.4.1 Standard NAT Targets . 17

1. Introduction 2

4.4.2 New Protocols . 17

4.4.3 New NAT Targets . 19

4.4.4 Protocol Helpers . 19

4.4.5 Connection Tracking Helper Modules . 19

4.4.6 NAT helper modules . 21

4.5 Understanding Net�lter . 23

4.6 Writing New Net�lter Modules . 24

4.6.1 Plugging Into Net�lter Hooks . 24

4.6.2 Processing Queued Packets . 24

4.6.3 Receiving Commands From Userspace . 25

4.7 Packet Handling in Userspace . 25

5 Translating 2.0 and 2.2 Packet Filter Modules 26

6 The Test Suite 26

6.1 Writing a Test . 26

6.2 Variables And Environment . 27

6.3 Useful Tools . 27

6.3.1 gen_ip . 27

6.3.2 rcv_ip . 28

6.3.3 gen_err . 28

6.3.4 local_ip . 29

6.4 Random Advice . 29

7 Motivation 29

8 Thanks 30

1 Introduction

Hi guys.

This document is a journey; some parts are well-traveled, and in other areas you will �nd yourself almost

alone. The best advice I can give you is to grab a large, cozy mug of co�ee or hot chocolate, get into

a comfortable chair, and absorb the contents before venturing out into the sometimes dangerous world of

network hacking.

For more understanding of the use of the infrastructure on top of the net�lter framework, I recommend

reading the Packet Filtering HOWTO and the NAT HOWTO. For information on kernel programming I

suggest Rusty's Unreliable Guide to Kernel Hacking and Rusty's Unreliable Guide to Kernel Locking.

(C) 2000 Paul `Rusty' Russell. Licenced under the GNU GPL.

1. Introduction 3

1.1 What is net�lter?

net�lter is a framework for packet mangling, outside the normal Berkeley socket interface. It has four parts.

Firstly, each protocol de�nes "hooks" (IPv4 de�nes 5) which are well-de�ned points in a packet's traversal

of that protocol stack. At each of these points, the protocol will call the net�lter framework with the packet

and the hook number.

Secondly, parts of the kernel can register to listen to the di�erent hooks for each protocol. So when a packet

is passed to the net�lter framework, it checks to see if anyone has registered for that protocol and hook;

if so, they each get a chance to examine (and possibly alter) the packet in order, then discard the packet

(NF_DROP), allow it to pass (NF_ACCEPT), tell net�lter to forget about the packet (NF_STOLEN), or ask net�lter

to queue the packet for userspace (NF_QUEUE).

The third part is that packets that have been queued are collected (by the ip_queue driver) for sending to

userspace; these packets are handled asynchronously.

The �nal part consists of cool comments in the code and documentation. This is instrumental for any

experimental project. The net�lter motto is (stolen shamelessly from Cort Dougan):

``So... how is this better than KDE?''

(This motto narrowly edged out `Whip me, beat me, make me use ipchains').

In addition to this raw framework, various modules have been written which provide functionality similar to

previous (pre-net�lter) kernels, in particular, an extensible NAT system, and an extensible packet �ltering

system (iptables).

1.2 What's wrong with what we had in 2.0 and 2.2?

1. No infrastructure established for passing packet to userspace:

� Kernel coding is hard

� Kernel coding must be done in C/C++

� Dynamic �ltering policies do not belong in kernel

� 2.2 introduced copying packets to userspace via netlink, but reinjecting packets is slow, and subject

to `sanity' checks. For example, reinjecting packet claiming to come from an existing interface is

not possible.

2. Transparent proxying is a crock:

� We look up every packet to see if there is a socket bound to that address

� Root is allowed to bind to foreign addresses

� Can't redirect locally-generated packets

� REDIRECT doesn't handle UDP replies: redirecting UDP named packets to 1153 doesn't work

because some clients don't like replies coming from anything other than port 53.

� REDIRECT doesn't coordinate with tcp/udp port allocation: a user may get a port shadowed

by a REDIRECT rule.

� Has been broken at least twice during 2.1 series.

� Code is extremely intrusive. Consider the stats on the number of #ifdef CON-

FIG_IP_TRANSPARENT_PROXY in 2.2.1: 34 occurrences in 11 �les. Compare this with

CONFIG_IP_FIREWALL, which has 10 occurrences in 5 �les.

1. Introduction 4

3. Creating packet �lter rules independent of interface addresses is not possible:

� Must know local interface addresses to distinguish locally-generated or locally-terminating packets

from through packets.

� Even that is not enough in cases of redirection or masquerading.

� Forward chain only has information on outgoing interface, meaning you have to �gure where a

packet came from using knowledge of the network topography.

4. Masquerading is tacked onto packet �ltering:Interactions between packet �ltering and masquerading

make �rewalling complex:

� At input �ltering, reply packets appear to be destined for box itself

� At forward �ltering, demasqueraded packets are not seen at all

� At output �ltering, packets appear to come from local box

5. TOS manipulation, redirect, ICMP unreachable and mark (which can e�ect port forwarding, routing,

and QoS) are tacked onto packet �lter code as well.

6. ipchains code is neither modular, nor extensible (eg. MAC address �ltering, options �ltering, etc).

7. Lack of su�cient infrastructure has led to a profusion of di�erent techniques:

� Masquerading, plus per-protocol modules

� Fast static NAT by routing code (doesn't have per-protocol handling)

� Port forwarding, redirect, auto forwarding

� The Linux NAT and Virtual Server Projects.

8. Incompatibility between CONFIG_NET_FASTROUTE and packet �ltering:

� Forwarded packets traverse three chains anyway

� No way to tell if these chains can be bypassed

9. Inspection of packets dropped due to routing protection (eg. Source Address Veri�cation) not possible.

10. No way of atomically reading counters on packet �lter rules.

11. CONFIG_IP_ALWAYS_DEFRAG is a compile-time option, making life di�cult for distributions

who want one general-purpose kernel.

1.3 Who are you?

I'm the only one foolish enough to do this. As ipchains co-author and current Linux Kernel IP Firewall

maintainer, I see many of the problems that people have with the current system, as well as getting exposure

to what they are trying to do.

1.4 Why does it crash?

Woah! You should have seen it last week!

Because I'm not as great a programmer as we might all wish, and I certainly haven't tested all scenarios,

because of lack of time, equipment and/or inspiration. I do have a testsuite, which I encourage you to

contribute to.

2. Where Can I Get The Latest? 5

2 Where Can I Get The Latest?

There is a CVS server on samba.org which contains the latest HOWTOs, userspace tools and testsuite. For

casual browsing, you can use the Web Interface <http://cvs.samba.org/cgi-bin/cvsweb/netfilter/>.

To grab the latest sources, you can do the following:

1. Log in to the SAMBA CVS server anonymously:

cvs -d :pserver:cvs@cvs.samba.org:/cvsroot login

2. When it asks you for a password type `cvs'.

3. Check out the code using:

cvs -d :pserver:cvs@cvs.samba.org:/cvsroot co netfilter

4. To update to the latest version, use

cvs update -d -P

3 Net�lter Architecture

Net�lter is merely a series of hooks in various points in a protocol stack (at this stage, IPv4, IPv6 and

DECnet). The (idealized) IPv4 traversal diagram looks like the following:

A Packet Traversing the Netfilter System:

--->[1]--->[ROUTE]--->[3]--->[4]--->

| ^

| |

| [ROUTE]

v |

[2] [5]

| ^

| |

v |

On the left is where packets come in: having passed the simple sanity checks (i.e., not truncated, IP checksum

OK, not a promiscuous receive), they are passed to the net�lter framework's NF_IP_PRE_ROUTING [1]

hook.

Next they enter the routing code, which decides whether the packet is destined for another interface, or a

local process. The routing code may drop packets that are unroutable.

If it's destined for the box itself, the net�lter framework is called again for the NF_IP_LOCAL_IN [2]

hook, before being passed to the process (if any).

If it's destined to pass to another interface instead, the net�lter framework is called for the

NF_IP_FORWARD [3] hook.

The packet then passes a �nal net�lter hook, the NF_IP_POST_ROUTING [4] hook, before being put on

the wire again.

The NF_IP_LOCAL_OUT [5] hook is called for packets that are created locally. Here you can see that

routing occurs after this hook is called: in fact, the routing code is called �rst (to �gure out the source IP

address and some IP options): if you want to alter the routing, you must alter the `skb->dst' �eld yourself,

as is done in the NAT code.

3. Net�lter Architecture 6

3.1 Net�lter Base

Now we have an example of net�lter for IPv4, you can see when each hook is activated. This is the essence

of net�lter.

Kernel modules can register to listen at any of these hooks. A module that registers a function must specify

the priority of the function within the hook; then when that net�lter hook is called from the core networking

code, each module registered at that point is called in the order of priorites, and is free to manipulate the

packet. The module can then tell net�lter to do one of �ve things:

1. NF_ACCEPT: continue traversal as normal.

2. NF_DROP: drop the packet; don't continue traversal.

3. NF_STOLEN: I've taken over the packet; don't continue traversal.

4. NF_QUEUE: queue the packet (usually for userspace handling).

5. NF_REPEAT: call this hook again.

The other parts of net�lter (handling queued packets, cool comments) will be covered in the kernel section

later.

Upon this foundation, we can build fairly complex packet manipulations, as shown in the next two sections.

3.2 Packet Selection: IP Tables

A packet selection system called IP Tables has been built over the net�lter framework. It is a direct

descendent of ipchains (that came from ipfwadm, that came from BSD's ipfw IIRC), with extensibility.

Kernel modules can register a new table, and ask for a packet to traverse a given table. This packet selection

method is used for packet �ltering (the `�lter' table), Network Address Translation (the `nat' table) and

general pre-route packet mangling (the `mangle' table).

The hooks that are registered with net�lter are as follows (with the functions in each hook in the order that

they are actually called):

--->PRE------>[ROUTE]--->FWD---------->POST------>

Conntrack | Filter ^ NAT (Src)

Mangle | | Conntrack

NAT (Dst) | [ROUTE]

(QDisc) v |

IN Filter OUT Conntrack

| Conntrack ^ Mangle

| | NAT (Dst)

v | Filter

3.2.1 Packet Filtering

This table, `�lter', should never alter packets: only �lter them.

One of the advantages of iptables �lter over ipchains is that it is small and fast, and it hooks into net�lter

at the NF_IP_LOCAL_IN, NF_IP_FORWARD and NF_IP_LOCAL_OUT points. This means that for

any given packet, there is one (and only one) possible place to �lter it. This makes things much simpler

4. Information for Programmers 7

for users than ipchains was. Also, the fact that the net�lter framework provides both the input and output

interfaces for the NF_IP_FORWARD hook means that many kinds of �ltering are far simpler.

Note: I have ported the kernel portions of both ipchains and ipfwadm as modules on top of net�lter, enabling

the use of the old ipfwadm and ipchains userspace tools without requiring an upgrade.

3.2.2 NAT

This is the realm of the `nat' table, which is fed packets from two net�lter hooks: for non-local packets,

the NF_IP_PRE_ROUTING and NF_IP_POST_ROUTING hooks are perfect for destination and source

alterations respectively. If CONFIG_IP_NF_NAT_LOCAL is de�ned, the hooks NF_IP_LOCAL_OUT

and NF_IP_LOCAL_IN are used for altering the destination of local packets.

This table is slightly di�erent from the `�lter' table, in that only the �rst packet of a new connection will

traverse the table: the result of this traversal is then applied to all future packets in the same connection.

Masquerading, Port Forwarding, Transparent Proxying I divide NAT into Source NAT (where the

�rst packet has its source altered), and Destination NAT (the �rst packet has its destination altered).

Masquerading is a special form of Source NAT: port forwarding and transparent proxying are special forms of

Destination NAT. These are now all done using the NAT framework, rather than being independent entities.

3.2.3 Packet Mangling

The packet mangling table (the `mangle' table) is used for actual changing of packet information. It hooks

into net�lter at the NF_IP_PRE_ROUTING and NF_IP_LOCAL_OUT points.

3.3 Connection Tracking

Connection tracking is fundamental to NAT, but it is implemented as a separate module; this allows an

extension to the packet �ltering code to simply and cleanly use connection tracking (the `state' module).

3.4 Other Additions

The new �exibility provides both the opportunity to do really funky things, but for people to write enhance-

ments or complete replacements that can be mixed and matched.

4 Information for Programmers

I'll let you in on a secret: my pet hamster did all the coding. I was just a channel, a `front' if you will, in

my pet's grand plan. So, don't blame me if there are bugs. Blame the cute, furry one.

4.1 Understanding ip_tables

iptables simply provides a named array of rules in memory (hence the name `iptables'), and such information

as where packets from each hook should begin traversal. After a table is registered, userspace can read and

replace its contents using getsockopt() and setsockopt().

4. Information for Programmers 8

iptables does not register with any net�lter hooks: it relies on other modules to do that and feed it the

packets as appropriate; a module must register the net�lter hooks and ip_tables separately, and provide the

mechanism to call ip_tables when the hook is reached.

4.1.1 ip_tables Data Structures

For convenience, the same data structure is used to represent a rule by userspace and within the kernel,

although a few �elds are only used inside the kernel.

Each rule consists of the following parts:

1. A `struct ipt_entry'.

2. Zero or more `struct ipt_entry_match' structures, each with a variable amount (0 or more bytes) of

data appended to it.

3. A `struct ipt_entry_target' structure, with a variable amount (0 or more bytes) of data appended to

it.

The variable nature of the rule gives a huge amount of �exibility for extensions, as we'll see, especially

as each match or target can carry an arbitrary amount of data. This does create a few traps, however:

we have to watch out for alignment. We do this by ensuring that the `ipt_entry', `ipt_entry_match'

and `ipt_entry_target' structures are conveniently sized, and that all data is rounded up to the maximal

alignment of the machine using the IPT_ALIGN() macro.

The `struct ipt_entry' has the following �elds:

1. A `struct ipt_ip' part, containing the speci�cations for the IP header that it is to match.

2. An `nf_cache' bit�eld showing what parts of the packet this rule examined.

3. A `target_o�set' �eld indicating the o�set from the beginning of this rule where the ipt_entry_target

structure begins. This should always be aligned correctly (with the IPT_ALIGN macro).

4. A `next_o�set' �eld indicating the total size of this rule, including the matches and target. This should

also be aligned correctly using the IPT_ALIGN macro.

5. A `comefrom' �eld used by the kernel to track packet traversal.

6. A `struct ipt_counters' �eld containing the packet and byte counters for packets which matched this

rule.

The `struct ipt_entry_match' and `struct ipt_entry_target' are very similar, in that they contain a total

(IPT_ALIGN'ed) length �eld (`match_size' and `target_size' respectively) and a union holding the name

of the match or target (for userspace), and a pointer (for the kernel).

Because of the tricky nature of the rule data structure, some helper routines are provided:

ipt_get_target()

This inline function returns a pointer to the target of a rule.

IPT_MATCH_ITERATE()

This macro calls the given function for every match in the given rule. The function's �rst ar-

gument is the `struct ipt_match_entry', and other arguments (if any) are those supplied to the

IPT_MATCH_ITERATE() macro. The function must return either zero for the iteration to con-

tinue, or a non-zero value to stop.

4. Information for Programmers 9

IPT_ENTRY_ITERATE()

This function takes a pointer to an entry, the total size of the table of entries, and a function to call.

The functions �rst argument is the `struct ipt_entry', and other arguments (if any) are those supplied

to the IPT_ENTRY_ITERATE() macro. The function must return either zero for the iteration to

continue, or a non-zero value to stop.

4.1.2 ip_tables From Userspace

Userspace has four operations: it can read the current table, read the info (hook positions and size of table),

replace the table (and grab the old counters), and add in new counters.

This allows any atomic operation to be simulated by userspace: this is done by the libiptc library, which

provides convenience "add/delete/replace" semantics for programs.

Because these tables are transferred into kernel space, alignment becomes an issue for machines which have

di�erent userspace and kernelspace type rules (eg. Sparc64 with 32-bit userland). These cases are handled

by overriding the de�nition of IPT_ALIGN for these platforms in `libiptc.h'.

4.1.3 ip_tables Use And Traversal

The kernel starts traversing at the location indicated by the particular hook. That rule is examined, if

the `struct ipt_ip' elements match, each `struct ipt_entry_match' is checked in turn (the match function

associated with that match is called). If the match function returns 0, iteration stops on that rule. If it sets

the `hotdrop' parameter to 1, the packet will also be immediately dropped (this is used for some suspicious

packets, such as in the tcp match function).

If the iteration continues to the end, the counters are incremented, the `struct ipt_entry_target' is examined:

if it's a standard target, the `verdict' �eld is read (negative means a packet verdict, positive means an o�set

to jump to). If the answer is positive and the o�set is not that of the next rule, the `back' variable is set,

and the previous `back' value is placed in that rule's `comefrom' �eld.

For non-standard targets, the target function is called: it returns a verdict (non-standard targets can't jump,

as this would break the static loop-detection code). The verdict can be IPT_CONTINUE, to continue on

to the next rule.

4.2 Extending iptables

Because I'm lazy, iptables is fairly extensible. This is basically a scam to palm o� work onto other people,

which is what Open Source is all about (cf. Free Software, which as RMS would say, is about freedom, and

I was sitting in one of his talks when I wrote this).

Extending iptables potentially involves two parts: extending the kernel, by writing a new module, and

possibly extending the userspace program iptables, by writing a new shared library.

4.2.1 The Kernel

Writing a kernel module itself is fairly simple, as you can see from the examples. One thing to be aware of is

that your code must be re-entrant: there can be one packet coming in from userspace, while another arrives

on an interrupt. In fact in SMP there can be one packet on an interrupt per CPU in 2.3.4 and above.

The functions you need to know about are:

4. Information for Programmers 10

init_module()

This is the entry-point of the module. It returns a negative error number, or 0 if it successfully registers

itself with net�lter.

cleanup_module()

This is the exit point of the module; it should unregister itself with net�lter.

ipt_register_match()

This is used to register a new match type. You hand it a `struct ipt_match', which is usually declared

as a static (�le-scope) variable.

ipt_register_target()

This is used to register a new type. You hand it a `struct ipt_target', which is usually declared as a

static (�le-scope) variable.

ipt_unregister_target()

Used to unregister your target.

ipt_unregister_match()

Used to unregister your match.

One warning about doing tricky things (such as providing counters) in the extra space in your new match

or target. On SMP machines, the entire table is duplicated using memcpy for each CPU: if you really want

to keep central information, you should see the method used in the `limit' match.

New Match Functions New match functions are usually written as a standalone module. It's possible

to have these modules extensible in turn, although it's usually not necessary. One way would be to use

the net�lter framework's `nf_register_sockopt' function to allows users to talk to your module directly.

Another way would be to export symbols for other modules to register themselves, the same way net�lter

and ip_tables do.

The core of your new match function is the struct ipt_match which it passes to `ipt_register_match()'.

This structure has the following �elds:

list

This �eld is set to any junk, say `f NULL, NULL g'.

name

This �eld is the name of the match function, as referred to by userspace. The name should match the

name of the module (i.e., if the name is "mac", the module must be "ipt_mac.o") for auto-loading to

work.

match

This �eld is a pointer to a match function, which takes the skb, the in and out device pointers (one of

which may be NULL, depending on the hook), a pointer to the match data in the rule that is worked

on (the structure that was prepared in userspace), the IP o�set (non-zero means a non-head fragment),

a pointer to the protocol header (i.e., just past the IP header), the length of the data (ie. the packet

length minus the IP header length) and �nally a pointer to a `hotdrop' variable. It should return

non-zero if the packet matches, and can set `hotdrop' to 1 if it returns 0, to indicate that the packet

must be dropped immediately.

4. Information for Programmers 11

checkentry

This �eld is a pointer to a function which checks the speci�cations for a rule; if this returns 0, then

the rule will not be accepted from the user. For example, the "tcp" match type will only accept tcp

packets, and so if the `struct ipt_ip' part of the rule does not specify that the protocol must be tcp, a

zero is returned. The tablename argument allows your match to control what tables it can be used in,

and the `hook_mask' is a bitmask of hooks this rule may be called from: if your match does not make

sense from some net�lter hooks, you can avoid that here.

destroy

This �eld is a pointer to a function which is called when an entry using this match is deleted. This

allows you to dynamically allocate resources in checkentry and clean them up here.

me

This �eld is set to `THIS_MODULE', which gives a pointer to your module. It causes the usage-count

to go up and down as rules of that type are created and destroyed. This prevents a user removing the

module (and hence cleanup_module() being called) if a rule refers to it.

New Targets New targets are also usually written as a standalone module. The discussions under the

above section on `New Match Functions' apply equally here.

The core of your new target is the struct ipt_target that it passes to ipt_register_target(). This structure

has the following �elds:

list

This �eld is set to any junk, say `f NULL, NULL g'.

name

This �eld is the name of the target function, as referred to by userspace. The name should match

the name of the module (i.e., if the name is "REJECT", the module must be "ipt_REJECT.o") for

auto-loading to work.

target

This is a pointer to the target function, which takes the skbu�, the hook number, the input and output

device pointers (either of which may be NULL), a pointer to the target data, and the position of the

rule in the table. The target function may return either IPT_CONTINUE (-1) if traversing should

continue, or a net�lter verdict (NF_DROP, NF_ACCEPT, NF_STOLEN etc.).

checkentry

This �eld is a pointer to a function which checks the speci�cations for a rule; if this returns 0, then

the rule will not be accepted from the user.

destroy

This �eld is a pointer to a function which is called when an entry using this target is deleted. This

allows you to dynamically allocate resources in checkentry and clean them up here.

me

This �eld is set to `THIS_MODULE', which gives a pointer to your module. It causes the usage-count

to go up and down as rules with this as a target are created and destroyed. This prevents a user

removing the module (and hence cleanup_module() being called) if a rule refers to it.

4. Information for Programmers 12

New Tables You can create a new table for your speci�c purpose if you wish. To do this, you call

`ipt_register_table()', with a `struct ipt_table', which has the following �elds:

list

This �eld is set to any junk, say `f NULL, NULL g'.

name

This �eld is the name of the table function, as referred to by userspace. The name should match the

name of the module (i.e., if the name is "nat", the module must be "iptable_nat.o") for auto-loading

to work.

table

This is a fully-populated `struct ipt_replace', as used by userspace to replace a table. The `counters'

pointer should be set to NULL. This data structure can be declared `__initdata' so it is discarded

after boot.

valid_hooks

This is a bitmask of the IPv4 net�lter hooks you will enter the table with: this is used to check

that those entry points are valid, and to calculate the possible hooks for ipt_match and ipt_target

`checkentry()' functions.

lock

This is the read-write spinlock for the entire table; initialize it to RW_LOCK_UNLOCKED.

private

This is used internally by the ip_tables code.

4.2.2 Userspace Tool

Now you've written your nice shiny kernel module, you may want to control the options on it from userspace.

Rather than have a branched version of iptables for each extension, I use the very latest 90's technology:

furbies. Sorry, I mean shared libraries.

New tables generally don't require any extension to iptables: the user just uses the `-t' option to make it

use the new table.

The shared library should have an `_init()' function, which will automatically be called upon loading: the

moral equivalent of the kernel module's `init_module()' function. This should call `register_match()' or

`register_target()', depending on whether your shared library provides a new match or a new target.

You need to provide a shared library: this can be used to initialize part of the structure, or provide additional

options. I now insist on a shared library even if it doesn't do anything, to reduce problem reports where the

shares libraries are missing.

There are useful functions described in the `iptables.h' header, especially:

check_inverse()

checks if an argument is actually a ` !', and if so, sets the `invert' �ag if not already set. If it returns

true, you should increment optind, as done in the examples.

string_to_number()

converts a string into a number in the given range, returning -1 if it is malformed or out of range.

`string_to_number' rely on `strtol' (see the manpage), meaning that a leading "0x" would make the

number be in Hexadecimal base, a leading "0" would make it be in Octal base.

4. Information for Programmers 13

exit_error()

should be called if an error is found. Usually the �rst argument is `PARAMETER_PROBLEM',

meaning the user didn't use the command line correctly.

New Match Functions Your shared library's _init() function hands `register_match()' a pointer to a

static `struct iptables_match', which has the following �elds:

next

This pointer is used to make a linked list of matches (such as used for listing rules). It should be set

to NULL initially.

name

The name of the match function. This should match the library name (eg "tcp" for `libipt_tcp.so').

version

Usually set to the NETFILTER_VERSION macro: this is used to ensure that the iptables binary

doesn't pick up the wrong shared libraries by mistake.

size

The size of the match data for this match; you should use the IPT_ALIGN() macro to ensure it is

correctly aligned.

userspacesize

For some matches, the kernel changes some �elds internally (the `limit' target is a case of this). This

means that a simple `memcmp()' is insu�cient to compare two rules (required for delete-matching-rule

functionality). If this is the case, place all the �elds which do not change at the start of the structure,

and put the size of the unchanging �elds here. Usually, however, this will be identical to the `size' �eld.

help

A function which prints out the option synopsis.

init

This can be used to initialize the extra space (if any) in the ipt_entry_match structure, and

set any nfcache bits; if you are examining something not expressible using the contents of

`linux/include/net�lter_ipv4.h', then simply OR in the NFC_UNKNOWN bit. It will be called before

`parse()'.

parse

This is called when an unrecognized option is seen on the command line: it should return non-zero

if the option was indeed for your library. `invert' is true if a ` !' has already been seen. The `�ags'

pointer is for the exclusive use of your match library, and is usually used to store a bitmask of options

which have been speci�ed. Make sure you adjust the nfcache �eld. You may extend the size of the

`ipt_entry_match' structure by reallocating if necessary, but then you must ensure that the size is

passed through the IPT_ALIGN macro.

�nal_check

This is called after the command line has been parsed, and is handed the `�ags' integer reserved for

your library. This gives you a chance to check that any compulsory options have been speci�ed, for

example: call `exit_error()' if this is the case.

4. Information for Programmers 14

print

This is used by the chain listing code to print (to standard output) the extra match information (if

any) for a rule. The numeric �ag is set if the user speci�ed the `-n' �ag.

save

This is the reverse of parse: it is used by `iptables-save' to reproduce the options which created the

rule.

extra_opts

This is a NULL-terminated list of extra options which your library o�ers. This is merged with the cur-

rent options and handed to getopt_long; see the man page for details. The return code for getopt_long

becomes the �rst argument (`c') to your `parse()' function.

There are extra elements at the end of this structure for use internally by iptables: you don't need to set

them.

New Targets Your shared library's _init() function hands `register_target()' it a pointer to a static

`struct iptables_target', which has similar �elds to the iptables_match structure detailed above.

4.2.3 Using `libiptc'

libiptc is the iptables control library, designed for listing and manipulating rules in the iptables kernel

module. While its current use is for the iptables program, it makes writing other tools fairly easy. You need

to be root to use these functions.

The kernel tables themselves are simply a table of rules, and a set of numbers representing entry points.

Chain names ("INPUT", etc) are provided as an abstraction by the library. User de�ned chains are labelled

by inserting an error node before the head of the user-de�ned chain, which contains the chain name in the

extra data section of the target (the builtin chain positions are de�ned by the three table entry points).

The following standard targets are supported: ACCEPT, DROP, QUEUE (which are translated to

NF_ACCEPT, NF_DROP, and NF_QUEUE, respectively), RETURN (which is translated to a special

IPT_RETURN value handled by ip_tables), and JUMP (which is translated from the chain name to an

actual o�set within the table).

When `iptc_init()' is called, the table, including the counters, is read. This table is manipulated

by the `iptc_insert_entry()', `iptc_replace_entry()', `iptc_append_entry()', `iptc_delete_entry()',

`iptc_delete_num_entry()', `iptc_�ush_entries()', `iptc_zero_entries()', `iptc_create_chain()'

`iptc_delete_chain()', and `iptc_set_policy()' functions.

The table changes are not written back until the `iptc_commit()' function is called. This means it is possible

for two library users operating on the same chain to race each other; locking would be required to prevent

this, and it is not currently done.

There is no race with counters, however; counters are added back in to the kernel in such a way that counter

increments between the reading and writing of the table still show up in the new table.

There are various helper functions:

iptc_�rst_chain()

This function returns the �rst chain name in the table.

iptc_next_chain()

This function returns the next chain name in the table: NULL means no more chains.

4. Information for Programmers 15

iptc_builtin()

Returns true if the given chain name is the name of a builtin chain.

iptc_�rst_rule()

This returns a pointer to the �rst rule in the given chain name: NULL for an empty chain.

iptc_next_rule()

This returns a pointer to the next rule in the chain: NULL means the end of the chain.

iptc_get_target()

This gets the target of the given rule. If it's an extended target, the name of that target is returned.

If it's a jump to another chain, the name of that chain is returned. If it's a verdict (eg. DROP), that

name is returned. If it has no target (an accounting-style rule), then the empty string is returned.

Note that this function should be used instead of using the value of the `verdict' �eld of the ipt_entry

structure directly, as it o�ers the above further interpretations of the standard verdict.

iptc_get_policy()

This gets the policy of a builtin chain, and �lls in the `counters' argument with the hit statistics on

that policy.

iptc_strerror()

This function returns a more meaningful explanation of a failure code in the iptc library. If a function

fails, it will always set errno: this value can be passed to iptc_strerror() to yield an error message.

4.3 Understanding NAT

Welcome to Network Address Translation in the kernel. Note that the infrastructure o�ered is designed more

for completeness than raw e�ciency, and that future tweaks may increase the e�ciency markedly. For the

moment I'm happy that it works at all.

NAT is separated into connection tracking (which doesn't manipulate packets at all), and the NAT code

itself. Connection tracking is also designed to be used by an iptables modules, so it makes subtle distinctions

in states which NAT doesn't care about.

4.3.1 Connection Tracking

Connection tracking hooks into high-priority NF_IP_LOCAL_OUT and NF_IP_PRE_ROUTING hooks,

in order to see packets before they enter the system.

The nfct �eld in the skb is a pointer to inside the struct ip_conntrack, at one of the infos[] array. Hence we

can tell the state of the skb by which element in this array it is pointing to: this pointer encodes both the

state structure and the relationship of this skb to that state.

The best way to extract the `nfct' �eld is to call `ip_conntrack_get()', which returns NULL if it's not set, or

the connection pointer, and �lls in ctinfo which describes the relationship of the packet to that connection.

This enumerated type has several values:

IP_CT_ESTABLISHED

The packet is part of an established connection, in the original direction.

IP_CT_RELATED

The packet is related to the connection, and is passing in the original direction.

4. Information for Programmers 16

IP_CT_NEW

The packet is trying to create a new connection (obviously, it is in the original direction).

IP_CT_ESTABLISHED + IP_CT_IS_REPLY

The packet is part of an established connection, in the reply direction.

IP_CT_RELATED + IP_CT_IS_REPLY

The packet is related to the connection, and is passing in the reply direction.

Hence a reply packet can be identi�ed by testing for >= IP_CT_IS_REPLY.

4.4 Extending Connection Tracking/NAT

These frameworks are designed to accommodate any number of protocols and di�erent mapping types. Some

of these mapping types might be quite speci�c, such as a load-balancing/fail-over mapping type.

Internally, connection tracking converts a packet to a "tuple", representing the interesting parts of the

packet, before searching for bindings or rules which match it. This tuple has a manipulatable part, and a

non-manipulatable part; called "src" and "dst", as this is the view for the �rst packet in the Source NAT

world (it'd be a reply packet in the Destination NAT world). The tuple for every packet in the same packet

stream in that direction is the same.

For example, a TCP packet's tuple contains the manipulatable part: source IP and source port, the non-

manipulatable part: destination IP and the destination port. The manipulatable and non-manipulatable

parts do not need to be the same type though; for example, an ICMP packet's tuple contains the manipulat-

able part: source IP and the ICMP id, and the non-manipulatable part: the destination IP and the ICMP

type and code.

Every tuple has an inverse, which is the tuple of the reply packets in the stream. For example, the inverse

of an ICMP ping packet, icmp id 12345, from 192.168.1.1 to 1.2.3.4, is a ping-reply packet, icmp id 12345,

from 1.2.3.4 to 192.168.1.1.

These tuples, represented by the `struct ip_conntrack_tuple', are used widely. In fact, together with the

hook the packet came in on (which has an e�ect on the type of manipulation expected), and the device

involved, this is the complete information on the packet.

Most tuples are contained within a `struct ip_conntrack_tuple_hash', which adds a doubly linked list entry,

and a pointer to the connection that the tuple belongs to.

A connection is represented by the `struct ip_conntrack': it has two `struct ip_conntrack_tuple_hash'

�elds: one referring to the direction of the original packet (tuplehash[IP_CT_DIR_ORIGINAL]), and one

referring to packets in the reply direction (tuplehash[IP_CT_DIR_REPLY]).

Anyway, the �rst thing the NAT code does is to see if the connection tracking code managed to extract a

tuple and �nd an existing connection, by looking at the skbu�'s nfct �eld; this tells us if it's an attempt on

a new connection, or if not, which direction it is in; in the latter case, then the manipulations determined

previously for that connection are done.

If it was the start of a new connection, we look for a rule for that tuple, using the standard iptables traversal

mechanism, on the `nat' table. If a rule matches, it is used to initialize the manipulations for both that

direction and the reply; the connection-tracking code is told that the reply it should expect has changed.

Then, it's manipulated as above.

If there is no rule, a `null' binding is created: this usually does not map the packet, but exists to ensure

we don't map another stream over an existing one. Sometimes, the null binding cannot be created, because

4. Information for Programmers 17

we have already mapped an existing stream over it, in which case the per-protocol manipulation may try to

remap it, even though it's nominally a `null' binding.

4.4.1 Standard NAT Targets

NAT targets are like any other iptables target extensions, except they insist on being used only in the

`nat' table. Both the SNAT and DNAT targets take a `struct ip_nat_multi_range' as their extra data;

this is used to specify the range of addresses a mapping is allowed to bind into. A range element, `struct

ip_nat_range' consists of an inclusive minimum and maximum IP address, and an inclusive maximum and

minimum protocol-speci�c value (eg. TCP ports). There is also room for �ags, which say whether the IP

address can be mapped (sometimes we only want to map the protocol-speci�c part of a tuple, not the IP),

and another to say that the protocol-speci�c part of the range is valid.

A multi-range is an array of these `struct ip_nat_range' elements; this means that a range could be "1.1.1.1-

1.1.1.2 ports 50-55 AND 1.1.1.3 port 80". Each range element adds to the range (a union, for those who like

set theory).

4.4.2 New Protocols

Inside The Kernel Implementing a new protocol �rst means deciding what the manipulatable and non-

manipulatable parts of the tuple should be. Everything in the tuple has the property that it identi�es the

stream uniquely. The manipulatable part of the tuple is the part you can do NAT with: for TCP this is the

source port, for ICMP it's the icmp ID; something to use as a "stream identi�er". The non-manipulatable

part is the rest of the packet that uniquely identi�es the stream, but we can't play with (eg. TCP destination

port, ICMP type).

Once you've decided this, you can write an extension to the connection-tracking code in the di-

rectory, and go about populating the `ip_conntrack_protocol' structure which you need to pass to

`ip_conntrack_register_protocol()'.

The �elds of `struct ip_conntrack_protocol' are:

list

Set it to 'f NULL, NULL g'; used to sew you into the list.

proto

Your protocol number; see `/etc/protocols'.

name

The name of your protocol. This is the name the user will see; it's usually best if it's the canonical

name in `/etc/protocols'.

pkt_to_tuple

The function which �lls out the protocol speci�c parts of the tuple, given the packet. The `datah'

pointer points to the start of your header (just past the IP header), and the datalen is the length of

the packet. If the packet isn't long enough to contain the header information, return 0; datalen will

always be at least 8 bytes though (enforced by framework).

invert_tuple

This function is simply used to change the protocol-speci�c part of the tuple into the way a reply to

that packet would look.

4. Information for Programmers 18

print_tuple

This function is used to print out the protocol-speci�c part of a tuple; usually it's sprintf()'d into the

bu�er provided. The number of bu�er characters used is returned. This is used to print the states for

the /proc entry.

print_conntrack

This function is used to print the private part of the conntrack structure, if any, also used for printing

the states in /proc.

packet

This function is called when a packet is seen which is part of an established connection. You get a

pointer to the conntrack structure, the IP header, the length, and the ctinfo. You return a verdict for

the packet (usually NF_ACCEPT), or -1 if the packet is not a valid part of the connection. You can

delete the connection inside this function if you wish, but you must use the following idiom to avoid

races (see ip_conntrack_proto_icmp.c):

if (del_timer(&ct->timeout))

ct->timeout.function((unsigned long)ct);

new

This function is called when a packet creates a connection for the �rst time; there is no ctinfo arg, since

the �rst packet is of ctinfo IP_CT_NEW by de�nition. It returns 0 to fail to create the connection,

or a connection timeout in ji�es.

Once you've written and tested that you can track your new protocol, it's time to teach NAT how to

translate it. This means writing a new module; an extension to the NAT code and go about populating the

`ip_nat_protocol' structure which you need to pass to `ip_nat_protocol_register()'.

list

Set it to 'f NULL, NULL g'; used to sew you into the list.

name

The name of your protocol. This is the name the user will see; it's best if it's the canonical name in

`/etc/protocols' for userspace auto-loading, as we'll see later.

protonum

Your protocol number; see `/etc/protocols'.

manip_pkt

This is the other half of connection tracking's pkt_to_tuple function: you can think of it as "tu-

ple_to_pkt". There are some di�erences though: you get a pointer to the start of the IP header, and

the total packet length. This is because some protocols (UDP, TCP) need to know the IP header.

You're given the ip_nat_tuple_manip �eld from the tuple (i.e., the "src" �eld), rather than the entire

tuple, and the type of manipulation you are to perform.

in_range

This function is used to tell if manipulatable part of the given tuple is in the given range. This function

is a bit tricky: we're given the manipulation type which has been applied to the tuple, which tells us

how to interpret the range (is it a source range or a destination range we're aiming for?).

This function is used to check if an existing mapping puts us in the right range, and also to check if

no manipulation is necessary at all.

4. Information for Programmers 19

unique_tuple

This function is the core of NAT: given a tuple and a range, we're to alter the per-protocol part of the

tuple to place it within the range, and make it unique. If we can't �nd an unused tuple in the range,

return 0. We also get a pointer to the conntrack structure, which is required for ip_nat_used_tuple().

The usual approach is to simply iterate the per-protocol part of the tuple through the range, checking

`ip_nat_used_tuple()' on it, until one returns false.

Note that the null-mapping case has already been checked: it's either outside the range given, or

already taken.

If IP_NAT_RANGE_PROTO_SPECIFIED isn't set, it means that the user is doing NAT, not

NAPT: do something sensible with the range. If no mapping is desirable (for example, within TCP, a

destination mapping should not change the TCP port unless ordered to), return 0.

print

Given a character bu�er, a match tuple and a mask, write out the per-protocol parts and return the

length of the bu�er used.

print_range

Given a character bu�er and a range, write out the per-protocol part of the range, and return the

length of the bu�er used. This won't be called if the IP_NAT_RANGE_PROTO_SPECIFIED �ag

wasn't set for the range.

4.4.3 New NAT Targets

This is the really interesting part. You can write new NAT targets which provide a new mapping type: two

extra targets are provided in the default package: MASQUERADE and REDIRECT. These are fairly simple

to illustrate the potential and power of writing a new NAT target.

These are written just like any other iptables targets, but internally they will extract the connection and

call `ip_nat_setup_info()'.

4.4.4 Protocol Helpers

Protocol helpers for connection tracking allow the connection tracking code to understand protocols which

use multiple network connections (eg. FTP) and mark the `child' connections as being related to the initial

connection, usually by reading the related address out of the data stream.

Protocol helpers for NAT do two things: �rstly allow the NAT code to manipulate the data stream to change

the address contained within it, and secondly to perform NAT on the related connection when it comes in,

based on the original connection.

4.4.5 Connection Tracking Helper Modules

Description The duty of a connection tracking module is to specify which packets belong to an already

established connection. The module has the following means to do that:

� Tell net�lter which packets our module is interested in (most helpers operate on a particular port).

� Register a function with net�lter. This function is called for every packet which matches the criteria

above.

� An `ip_conntrack_expect_related()' function which can be called from there to tell net�lter to expect

a related connection.

4. Information for Programmers 20

Structures and Functions Available Your kernel module's init function has to call

`ip_conntrack_helper_register()' with a pointer to a `struct ip_conntrack_helper'. This struct has

the following �elds:

list

This is the header for the linked list. Net�lter handles this list internally. Just initialize it with `f

NULL, NULL g'.

tuple

This is a `struct ip_conntrack_tuple' which speci�es the packets our conntrack helper module is

interested in.

mask

Again a `struct ip_conntrack_tuple'. This mask speci�es which bits of tuple are valid.

help

The function which net�lter should call for each packet matching tuple+mask

Example skeleton of a conntrack helper module

#define FOO_PORT 111

static int foo_help(const struct iphdr *iph, size_t len,

struct ip_conntrack *ct,

enum ip_conntrack_info ctinfo)

{

/* analyze the data passed on this connection and

decide how related packets will look like */

if (there_will_be_new_packets_related_to_this_connection)

{

t = new_tuple_specifying_related_packets;

ip_conntrack_expect_related(ct, &t);

/* save information important for NAT in

ct->help.ct_foo_info; */

}

return NF_ACCEPT;

}

static struct ip_conntrack_helper foo;

static int __init init(void)

{

memset(&foo, 0, sizeof(struct ip_conntrack_helper);

/* we are interested in all TCP packets with destport 111 */

foo.tuple.dst.protonum = IPPROTO_TCP;

foo.tuple.dst.u.tcp.port = htons(FOO_PORT);

foo.mask.dst.protonum = 0xFFFF;

foo.mask.dst.u.tcp.port = 0xFFFF;

foo.help = foo_help;

4. Information for Programmers 21

return ip_conntrack_helper_register(&foo);

}

static void __exit fini(void)

{

ip_conntrack_helper_unregister(&foo);

}

4.4.6 NAT helper modules

Description NAT helper modules do some application speci�c NAT handling. Usually this includes on-

the-�y manipulation of data: think about the PORT command in FTP, where the client tells the server

which IP/port to connect to. Therefor an FTP helper module must replace the IP/port after the PORT

command in the FTP control connection.

If we are dealing with TCP, things get slightly more complicated. The reason is a possible change of the

packet size (FTP example: the length of the string representing an IP/port tuple after the PORT command

has changed). If we change the packet size, we have a syn/ack di�erence between left and right side of the

NAT box. (i.e. if we had extended one packet by 4 octets, we have to add this o�set to the TCP sequence

number of each following packet).

Special NAT handling of all related packets is required, too. Take as example again FTP, where all incoming

packets of the DATA connection have to be NATed to the IP/port given by the client with the PORT

command on the control connection, rather than going through the normal table lookup.

� callback for the packet causing the related connection (foo_help)

� callback for all related packets (foo_nat_expected)

Structures and Functions Available Your nat helper module's `init()' function calls

`ip_nat_helper_register()' with a pointer to a `struct ip_nat_helper'. This struct has the following

members:

list

Just again the list header for net�lters internal use. Initialize this with f NULL, NULL g.

tuple

a `struct ip_conntrack_tuple' describing which packets our NAT helper is interested in.

mask

a `struct ip_conntrack_tuple', telling net�lter which bits of tuple are valid.

help

The help function which is called for each packet matching tuple+mask.

name

The unique name this NAT helper is identi�ed by.

This is exactly the same as writing a connection tracking helper.

You can also indicate your module is ready to handle the NAT of any expected connections (presumably set

up by a connection tracking module), using the `ip_nat_expect_register()' function, which takes a `struct

ip_nat_expect'. This struct has the following members:

4. Information for Programmers 22

list

Just again the list header for net�lters internal use. Initialize this with f NULL, NULL g.

expect

the function which does NAT for expected connections. Returns true if it has handled the connection,

otherwise the next registered expect function will be called to see if it handles the packet. If it returns

true, the function must �ll in the verdict.

Example NAT helper module

#define FOO_PORT 111

static int foo_nat_expected(struct sk_buff **pksb,

unsigned int hooknum,

struct ip_conntrack *ct,

struct ip_nat_info *info,

struct ip_conntrack *master,

struct ip_nat_info *masterinfo,

unsigned int *verdict)

/* called whenever a related packet (as specified in the connection tracking

module) arrives

params: pksb packet buffer

hooknum HOOK the call comes from (POST_ROUTING, PRE_ROUTING)

ct information about this (the related) connection

info &ct->nat.info

master information about the master connection

masterinfo &master->nat.info

verdict what to do with the packet if we return 1.

{

/* Check that this was from foo_expect, not ftp_expect, etc */

/* Then just change ip/port of the packet to the masqueraded

values (read from master->tuplehash), to map it the same way,

call ip_nat_setup_info, set *verdict, return 1. */

}

static int foo_help(struct ip_conntrack *ct,

struct ip_nat_info *info,

enum ip_conntrack_info ctinfo,

unsigned int hooknum,

struct sk_buff **pksb)

/* called for the packet causing related packets

params: ct information about tracked connection

info (STATE: related, new, established, ...)

hooknum HOOK the call comes from (POST_ROUTING, PRE_ROUTING)

pksb packet buffer

*/

{

/* extract information about future related packets (you can

share information with the connection tracking's foo_help).

Exchange address/port with masqueraded values, insert tuple

about related packets */

4. Information for Programmers 23

}

static struct ip_nat_expect foo_expect = {

{ NULL, NULL },

foo_nat_expected };

static struct ip_nat_helper hlpr;

static int __init(void)

{

int ret;

if ((ret = ip_nat_expect_register(&foo_expect)) == 0) {

memset(&hlpr, 0, sizeof(struct ip_nat_helper));

hlpr.list = { NULL, NULL };

hlpr.tuple.dst.protonum = IPPROTO_TCP;

hlpr.tuple.dst.u.tcp.port = htons(FOO_PORT);

hlpr.mask.dst.protonum = 0xFFFF;

hlpr.mask.dst.u.tcp.port = 0xFFFF;

hlpr.help = foo_help;

ret = ip_nat_helper_register(hlpr);

if (ret != 0)

ip_nat_expect_unregister(&foo_expect);

}

return ret;

}

static void __exit(void)

{

ip_nat_expect_unregister(&foo_expect);

ip_nat_helper_unregister(&hlpr);

}

4.5 Understanding Net�lter

Net�lter is pretty simple, and is described fairly thoroughly in the previous sections. However, sometimes

it's necessary to go beyond what the NAT or ip_tables infrastructure o�ers, or you may want to replace

them entirely.

One important issue for net�lter (well, in the future) is caching. Each skb has an `nfcache' �eld: a bitmask

of what �elds in the header were examined, and whether the packet was altered or not. The idea is that

each hook o� net�lter OR's in the bits relevant to it, so that we can later write a cache system which will

be clever enough to realize when packets do not need to be passed through net�lter at all.

The most important bits are NFC_ALTERED, meaning the packet was altered (this is already used for

IPv4's NF_IP_LOCAL_OUT hook, to reroute altered packets), and NFC_UNKNOWN, which means

caching should not be done because some property which cannot be expressed was examined. If in doubt,

simply set the NFC_UNKNOWN �ag on the skb's nfcache �eld inside your hook.

4. Information for Programmers 24

4.6 Writing New Net�lter Modules

4.6.1 Plugging Into Net�lter Hooks

To receive/mangle packets inside the kernel, you can simply write a module which registers a "net�lter

hook". This is basically an expression of interest at some given point; the actual points are protocol-speci�c,

and de�ned in protocol-speci�c net�lter headers, such as "net�lter_ipv4.h".

To register and unregister net�lter hooks, you use the functions `nf_register_hook' and

`nf_unregister_hook'. These each take a pointer to a `struct nf_hook_ops', which you populate as

follows:

list

Used to sew you into the linked list: set to 'f NULL, NULL g'

hook

The function which is called when a packet hits this hook point. Your function must return

NF_ACCEPT, NF_DROP or NF_QUEUE. If NF_ACCEPT, the next hook attached to that point

will be called. If NF_DROP, the packet is dropped. If NF_QUEUE, it's queued. You receive a pointer

to an skb pointer, so you can entirely replace the skb if you wish.

�ush

Currently unused: designed to pass on packet hits when the cache is �ushed. May never be imple-

mented: set it to NULL.

pf

The protocol family, eg, `PF_INET' for IPv4.

hooknum

The number of the hook you are interested in, eg `NF_IP_LOCAL_OUT'.

4.6.2 Processing Queued Packets

This interface is currently used by ip_queue; you can register to handle queued packets for a given protocol.

This has similar semantics to registering for a hook, except you can block processing the packet, and you

only see packets for which a hook has replied `NF_QUEUE'.

The two functions used to register interest in queued packets are `nf_register_queue_handler()' and

`nf_unregister_queue_handler()'. The function you register will be called with the `void *' pointer you

handed it to `nf_register_queue_handler()'.

If no-one is registered to handle a protocol, then returning NF_QUEUE is equivalent to returning

NF_DROP.

Once you have registered interest in queued packets, they begin queueing. You can do whatever you want

with them, but you must call `nf_reinject()' when you are �nished with them (don't simply kfree_skb()

them). When you reinject an skb, you hand it the skb, the `struct nf_info' which your queue handler was

given, and a verdict: NF_DROP causes them to be dropped, NF_ACCEPT causes them to continue to

iterate through the hooks, NF_QUEUE causes them to be queued again, and NF_REPEAT causes the

hook which queued the packet to be consulted again (beware in�nite loops).

You can look inside the `struct nf_info' to get auxiliary information about the packet, such as the interfaces

and hook it was on.

4. Information for Programmers 25

4.6.3 Receiving Commands From Userspace

It is common for net�lter components to want to interact with userspace. The method for doing this is

by using the setsockopt mechanism. Note that each protocol must be modi�ed to call nf_setsockopt() for

setsockopt numbers it doesn't understand (and nf_getsockopt() for getsockopt numbers), and so far only

IPv4, IPv6 and DECnet have been modi�ed.

Using a now-familiar technique, we register a `struct nf_sockopt_ops' using the nf_register_sockopt() call.

The �elds of this structure are as follows:

list

Used to sew it into the linked list: set to 'f NULL, NULL g'.

pf

The protocol family you handle, eg. PF_INET.

set_optmin

and

set_optmax

These specify the (exclusive) range of setsockopt numbers handled. Hence using 0 and 0 means you

have no setsockopt numbers.

set

This is the function called when the user calls one of your setsockopts. You should check that they

have NET_ADMIN capability within this function.

get_optmin

and

get_optmax

These specify the (exclusive) range of getsockopt numbers handled. Hence using 0 and 0 means you

have no getsockopt numbers.

get

This is the function called when the user calls one of your getsockopts. You should check that they

have NET_ADMIN capability within this function.

The �nal two �elds are used internally.

4.7 Packet Handling in Userspace

Using the libipq library and the `ip_queue' module, almost anything which can be done inside the kernel can

now be done in userspace. This means that, with some speed penalty, you can develop your code entirely

in userspace. Unless you are trying to �lter large bandwidths, you should �nd this approach superior to

in-kernel packet mangling.

In the very early days of net�lter, I proved this by porting an embryonic version of iptables to userspace.

Net�lter opens the doors for more people to write their own, fairly e�cient netmangling modules, in whatever

language they want.

5. Translating 2.0 and 2.2 Packet Filter Modules 26

5 Translating 2.0 and 2.2 Packet Filter Modules

Look at the ip_fw_compat.c �le for a simple layer which should make porting quite simple.

6 The Test Suite

Within the CVS repository lives a test suite: the more the test suite covers, the greater con�dence you can

have that changes to the code hasn't quietly broken something. Trivial tests are at least as important as

tricky tests: it's the trivial tests which simplify the complex tests (since you know the basics work �ne before

the complex test gets run).

The tests are simple: they are just shell scripts under the testsuite/ subdirectory which are supposed to

succeed. The scripts are run in alphabetical order, so `01test' is run before `02test'. Currently there are 5

test directories:

00net�lter/

General net�lter framework tests.

01iptables/

iptables tests.

02conntrack/

connection tracking tests.

03NAT/

NAT tests

04ipchains-compat/

ipchains/ipfwadm compatibility tests

Inside the testsuite/ directory is a script called `test.sh'. It con�gures two dummy interfaces (tap0 and tap1),

turns forwarding on, and removes all net�lter modules. Then it runs through the directories above and runs

each of their test.sh scripts until one fails. This script takes two optional arguments: `-v' meaning to print

out each test as it proceeds, and an optional test name: if this is given, it will skip over all tests until this

one is found.

6.1 Writing a Test

Create a new �le in the appropriate directory: try to number your test so that it gets run at the right time.

For example, in order to test ICMP reply tracking (02conntrack/02reply.sh), we need to �rst check that

outgoing ICMPs are tracked properly (02conntrack/01simple.sh).

It's usually better to create many small �les, each of which covers one area, because it helps to isolate

problems immediately for people running the testsuite.

If something goes wrong in the test, simply do an `exit 1', which causes failure; if it's something you expect

may fail, you should print a unique message. Your test should end with `exit 0' if everything goes OK. You

should check the success of every command, either using `set -e' at the top of the script, or appending `jj

exit 1' to the end of each command.

The helper functions `load_module' and `remove_module' can be used to load modules: you should never

rely on autoloading in the testsuite unless that is what you are speci�cally testing.

6. The Test Suite 27

6.2 Variables And Environment

You have two play interfaces: tap0 and tap1. Their interface addresses are in variables $TAP0 and $TAP1

respectively. They both have netmasks of 255.255.255.0; their networks are in $TAP0NET and $TAP1NET

respectively.

There is an empty temporary �le in $TMPFILE. It is deleted at the end of your test.

Your script will be run from the testsuite/ directory, wherever it is. Hence you should access tools (such as

iptables) using path starting with `../userspace'.

Your script can print out more information if $VERBOSE is set (meaning that the user speci�ed `-v' on the

command line).

6.3 Useful Tools

There are several useful testsuite tools in the "tools" subdirectory: each one exits with a non-zero exit status

if there is a problem.

6.3.1 gen_ip

You can generate IP packets using `gen_ip', which outputs an IP packet to standard input. You can feed

packets in the tap0 and tap1 by sending standard output to /dev/tap0 and /dev/tap1 (these are created

upon �rst running the testsuite if they don't exist).

gen_ip is a simplistic program which is currently very fussy about its argument order. First are the general

optional arguments:

FRAG=o�set,length

Generate the packet, then turn it into a fragment at the following o�set and length.

MF

Set the `More Fragments' bit on the packet.

MAC=xx:xx:xx:xx:xx:xx

Set the source MAC address on the packet.

TOS=tos

Set the TOS �eld on the packet (0 to 255).

Next come the compulsory arguments:

source ip

Source IP address of the packet.

dest ip

Destination IP address of the packet.

length

Total length of the packet, including headers.

protocol

Protocol number of the packet, eg 17 = UDP.

6. The Test Suite 28

Then the arguments depend on the protocol: for UDP (17), they are the source and destination port

numbers. For ICMP (1), they are the type and code of the ICMP message: if the type is 0 or 8 (ping-reply

or ping), then two additional arguments (the ID and sequence �elds) are required. For TCP, the source

and destination ports, and �ags ("SYN", "SYN/ACK", "ACK", "RST" or "FIN") are required. There are

three optional arguments: "OPT=" followed by a comma-separated list of options, "SYN=" followed by a

sequence number, and "ACK=" followed by a sequence number. Finally, the optional argument "DATA"

indicates that the payload of the TCP packet is to be �lled with the contents of standard input.

6.3.2 rcv_ip

You can see IP packets using `rcv_ip', which prints out the command line as close as possible to the original

value fed to gen_ip (fragments are the exception).

This is extremely useful for analyzing packets. It takes two compulsory arguments:

wait time

The maximum time in seconds to wait for a packet from standard input.

iterations

The number of packets to receive.

There is one optional argument, "DATA", which causes the payload of a TCP packet to be printed on

standard output after the packet header.

The standard way to use `rcv_ip' in a shell script is as follows:

Set up job control, so we can use & in shell scripts.

set -m

Wait two seconds for one packet from tap0

../tools/rcv_ip 2 1 < /dev/tap0 > $TMPFILE &

Make sure that rcv_ip has started running.

sleep 1

Send a ping packet

../tools/gen_ip $TAP1NET.2 $TAP0NET.2 100 1 8 0 55 57 > /dev/tap1 || exit 1

Wait for rcv_ip,

if wait %../tools/rcv_ip; then :

else

echo rcv_ip failed:

cat $TMPFILE

exit 1

fi

6.3.3 gen_err

This program takes a packet (as generated by gen_ip, for example) on standard input, and turns it into an

ICMP error.

It takes three arguments: a source IP address, a type and a code. The destination IP address will be set to

the source IP address of the packet fed in standard input.

7. Motivation 29

6.3.4 local_ip

This takes a packet from standard input and injects it into the system from a raw socket. This give the

appearance of a locally-generated packet (as separate from feeding a packet in one of the ethertap devices,

which looks like a remotely-generated packet).

6.4 Random Advice

All the tools assume they can do everything in one read or write: this is true for the ethertap devices, but

might not be true if you're doing something tricky with pipes.

dd can be used to cut packets: dd has an obs (output block size) option which can be used to make it output

the packet in a single write.

Test for success �rst: eg. testing that packets are successfully blocked. First test that packets pass through

normally, then test that some packets are blocked. Otherwise an unrelated failure could be stopping the

packets...

Try to write exact tests, not `throw random stu� and see what happens' tests. If an exact test goes wrong,

it's a useful thing to know. If a random test goes wrong once, it doesn't help much.

If a test fails without a message, you can add `-x' to the top line of the script (ie. `#! /bin/sh -x') to see

what commands it's running.

If a test fails randomly, check for random network tra�c interfering (try downing all your external interfaces).

Sitting on the same network as Andrew Tridgell, I tend to get plagued by Windows broadcasts, for example.

7 Motivation

As I was developing ipchains, I realized (in one of those blinding-�ash-while-waiting-for-entree moments in

a Chinese restaurant in Sydney) that packet �ltering was being done in the wrong place. I can't �nd it now,

but I remember sending mail to Alan Cox, who kind of said `why don't you �nish what you're doing, �rst,

even though you're probably right'. In the short term, pragmatism was to win over The Right Thing.

After I �nished ipchains, which was initially going to be a minor modi�cation of the kernel part of ipfwadm,

and turned into a larger rewrite, and wrote the HOWTO, I became aware of just how much confusion there

is in the wider Linux community about issues like packet �ltering, masquerading, port forwarding and the

like.

This is the joy of doing your own support: you get a closer feel for what the users are trying to do, and what

they are struggling with. Free software is most rewarding when it's in the hands of the most users (that's

the point, right?), and that means making it easy. The architecture, not the documentation, was the key

�aw.

So I had the experience, with the ipchains code, and a good idea of what people out there were doing. There

were only two problems.

Firstly, I didn't want to get back into security. Being a security consultant is a constant moral tug-of-war

between your conscience and your wallet. At a fundamental level, you are selling the feeling of security,

which is at odds with actual security. Maybe working in a military setting, where they understand security,

it'd be di�erent.

The second problem is that newbie users aren't the only concern; an increasing number of large companies

and ISPs are using this stu�. I needed reliable input from that class of users if it was to scale to tomorrow's

home users.

8. Thanks 30

These problems were resolved, when I ran into David Bonn, of WatchGuard fame, at Usenix in July 1998.

They were looking for a Linux kernel coder; in the end we agreed that I'd head across to their Seattle o�ces

for a month and we'd see if we could hammer out an agreement whereby they'd sponsor my new code, and

my current support e�orts. The rate we agreed on was more than I asked, so I didn't take a pay cut. This

means I don't have to even think about external conslutting for a while.

Exposure to WatchGuard gave me exposure to the large clients I need, and being independent from them

allowed me to support all users (eg. WatchGuard competitors) equally.

So I could have simply written net�lter, ported ipchains over the top, and been done with it. Unfortunately,

that would leave all the masquerading code in the kernel: making masquerading independent from �ltering

is the one of the major wins point of moving the packet �ltering points, but to do that masquerading also

needed to be moved over to the net�lter framework as well.

Also, my experience with ipfwadm's `interface-address' feature (the one I removed in ipchains) had taught

me that there was no hope of simply ripping out the masquerading code and expecting someone who needed

it to do the work of porting it onto net�lter for me.

So I needed to have at least as many features as the current code; preferably a few more, to encourage niche

users to become early adopters. This means replacing transparent proxying (gladly!), masquerading and

port forwarding. In other words, a complete NAT layer.

Even if I had decided to port the existing masquerading layer, instead of writing a generic NAT system,

the masquerading code was showing its age, and lack of maintenance. See, there was no masquerading

maintainer, and it shows. It seems that serious users generally don't use masquerading, and there aren't

many home users up to the task of doing maintenance. Brave people like Juan Ciarlante were doing �xes,

but it had reached to the stage (being extended over and over) that a rewrite was needed.

Please note that I wasn't the person to do a NAT rewrite: I didn't use masquerading any more, and I'd not

studied the existing code at the time. That's probably why it took me longer than it should have. But the

result is fairly good, in my opinion, and I sure as hell learned a lot. No doubt the second version will be

even better, once we see how people use it.

8 Thanks

Thanks to those who helped, expecially Harald Welte for writing the Protocol Helpers section.

