Linux netfilter Hacking HOWTO

Rusty Russell, mailing list netfilter@lists.samba.org $Revision: 1.10 § $Date: 2001/05/04 20:58:43 §

This document describes the netfilter architecture for Linux, how to hack it, and some of the major systems which
sit on top of it, such as packet filtering, connection tracking and Network Address Translation.

Contents
1 Introduction 2
1.1 What is netfilter? 3
1.2 What’s wrong with what we had in 2.0 and 2.27 3
1.3 Whoare you? L 4
1.4 Why does it crash? oL 4
2 Where Can I Get The Latest? 5
3 Netfilter Architecture 5
3.1 Netfilter Base e 6
3.2 Packet Selection: IP Tables 6
3.2.1 Packet Filtering e 6
3.2.2 NAT . . e 7
3.23 Packet Mangling L 7
3.3 Comnection Tracking e 7
3.4 Other Additions e 7
4 Information for Programmers 7
4.1 Understanding ip tables. e 7
4.1.1 ip tables Data Structures 8
4.1.2 ip_ tables From Userspace e 9
4.1.3 1ip tables Use And Traversal 9
4.2 Extending iptables L 9
421 The Kernel e e e 9
4.2.2 Userspace Tool e e 12
4.2.3 Using ‘Iibiptc’ o L e 14
4.3 Understanding NAT e 15
4.3.1 Connection Tracking L 15
4.4 Extending Connection Tracking/NAT 16

4.4.1 Standard NAT Targets o o0 it i 17

1. Introduction 2

4.4.2 New Protocols e 17

4.4.3 New NAT Targets o oo i e e e 19

444 Protocol Helpers 19

4.4.5 Connection Tracking Helper Modules, 19

4.4.6 NAT helper modules e 21

4.5 Understanding Netfilter 23
4.6 Writing New Netfilter Modules 24
4.6.1 Plugging Into Netfilter Hooks 24

4.6.2 Processing Queued Packetso 24

4.6.3 Receiving Commands From Userspace 25

4.7 Packet Handling in Userspace e 25

5 Translating 2.0 and 2.2 Packet Filter Modules 26
6 The Test Suite 26
6.1 Writing a Test e 26
6.2 Variables And Environment L 27
6.3 Useful Tools e 27
6.3.1 gen Ip. e 27

6.3.2 rev 0D ... e e 28

6.3.3 gen_err e e 28

6.3.4 local ip 29

6.4 Random Advice 29

7 Motivation 29
8 Thanks 30

1 Introduction

Hi guys.
This document is a journey; some parts are well-traveled, and in other areas you will find yourself almost
alone. The best advice I can give you is to grab a large, cozy mug of coffee or hot chocolate, get into

a comfortable chair, and absorb the contents before venturing out into the sometimes dangerous world of
network hacking.

For more understanding of the use of the infrastructure on top of the netfilter framework, I recommend
reading the Packet Filtering HOWTO and the NAT HOWTO. For information on kernel programming I
suggest Rusty’s Unreliable Guide to Kernel Hacking and Rusty’s Unreliable Guide to Kernel Locking.

(C) 2000 Paul ‘Rusty’ Russell. Licenced under the GNU GPL.

1. Introduction 3

1.1 What is netfilter?

netfilter is a framework for packet mangling, outside the normal Berkeley socket interface. It has four parts.
Firstly, each protocol defines "hooks" (IPv4 defines 5) which are well-defined points in a packet’s traversal
of that protocol stack. At each of these points, the protocol will call the netfilter framework with the packet
and the hook number.

Secondly, parts of the kernel can register to listen to the different hooks for each protocol. So when a packet
is passed to the netfilter framework, it checks to see if anyone has registered for that protocol and hook;
if so, they each get a chance to examine (and possibly alter) the packet in order, then discard the packet
(NF_DROP), allow it to pass (NF_ACCEPT), tell netfilter to forget about the packet (NF_STOLEN), or ask netfilter
to queue the packet for userspace (NF_QUEUE).

The third part is that packets that have been queued are collected (by the ip_queue driver) for sending to
userspace; these packets are handled asynchronously.

The final part consists of cool comments in the code and documentation. This is instrumental for any
experimental project. The netfilter motto is (stolen shamelessly from Cort Dougan):

¢¢So... how is this better than KDE?’’

(This motto narrowly edged out ‘Whip me, beat me, make me use ipchains’).

In addition to this raw framework, various modules have been written which provide functionality similar to
previous (pre-netfilter) kernels, in particular, an extensible NAT system, and an extensible packet filtering
system (iptables).

1.2 What’s wrong with what we had in 2.0 and 2.27

1. No infrastructure established for passing packet to userspace:

o Kernel coding is hard
e Kernel coding must be done in C/C++
e Dynamic filtering policies do not belong in kernel

e 2.2 introduced copying packets to userspace via netlink, but reinjecting packets is slow, and subject
to ‘sanity’ checks. For example, reinjecting packet claiming to come from an existing interface is
not possible.

2. Transparent proxying is a crock:

o We look up every packet to see if there is a socket bound to that address
e Root is allowed to bind to foreign addresses
e Can’t redirect locally-generated packets

e REDIRECT doesn’t handle UDP replies: redirecting UDP named packets to 1153 doesn’t work
because some clients don’t like replies coming from anything other than port 53.

e REDIRECT doesn’t coordinate with tcp/udp port allocation: a user may get a port shadowed
by a REDIRECT rule.

e Has been broken at least twice during 2.1 series.

e Code is extremely intrusive. Consider the stats on the number of #ifdef CON-
FIG IP TRANSPARENT PROXY in 2.2.1: 34 occurrences in 11 files. Compare this with
CONFIG _IP FIREWALL, which has 10 occurrences in 5 files.

1.

Introduction 4

3

10.

11.

1.3

I'm

. Creating packet filter rules independent of interface addresses is not possible:

e Must know local interface addresses to distinguish locally-generated or locally-terminating packets
from through packets.

e Even that is not enough in cases of redirection or masquerading.

e Forward chain only has information on outgoing interface, meaning you have to figure where a
packet came from using knowledge of the network topography.

. Masquerading is tacked onto packet filtering:Interactions between packet filtering and masquerading
make firewalling complex:

e At input filtering, reply packets appear to be destined for box itself
o At forward filtering, demasqueraded packets are not seen at all

e At output filtering, packets appear to come from local box

TOS manipulation, redirect, ICMP unreachable and mark (which can effect port forwarding, routing,
and QoS) are tacked onto packet filter code as well.

ipchains code is neither modular, nor extensible (eg. MAC address filtering, options filtering, etc).
Lack of sufficient infrastructure has led to a profusion of different techniques:

e Masquerading, plus per-protocol modules
e Fast static NAT by routing code (doesn’t have per-protocol handling)
e Port forwarding, redirect, auto forwarding

e The Linux NAT and Virtual Server Projects.
Incompatibility between CONFIG _NET FASTROUTE and packet filtering:

e Forwarded packets traverse three chains anyway

e No way to tell if these chains can be bypassed
Inspection of packets dropped due to routing protection (eg. Source Address Verification) not possible.
No way of atomically reading counters on packet filter rules.

CONFIG_IP ALWAYS DEFRAG is a compile-time option, making life difficult for distributions
who want one general-purpose kernel.

Who are you?

the only one foolish enough to do this. As ipchains co-author and current Linux Kernel IP Firewall

maintainer, I see many of the problems that people have with the current system, as well as getting exposure

to what they are trying to do.

1.4

Why does it crash?

Woah! You should have seen it last week!

Because I'm not as great a programmer as we might all wish, and I certainly haven’t tested all scenarios,

because of lack of time, equipment and/or inspiration. I do have a testsuite, which I encourage you to

contribute to.

2. Where Can I Get The Latest? 5

2 Where Can I Get The Latest?

There is a CVS server on samba.org which contains the latest HOWTOs, userspace tools and testsuite. For
casual browsing, you can use the Web Interface <http://cvs.samba.org/cgi-bin/cvsweb/netfilter/>.

To grab the latest sources, you can do the following;:

1. Log in to the SAMBA CVS server anonymously:
cvs -d :pserver:cvs@cvs.samba.org:/cvsroot login
2. When it asks you for a password type ‘cvs’.
3. Check out the code using:
cvs -d :pserver:cvsQcvs.samba.org:/cvsroot co netfilter
4. To update to the latest version, use

cvs update -d -P

3 Netfilter Architecture

Netfilter is merely a series of hooks in various points in a protocol stack (at this stage, IPv4, IPv6 and
DECnet). The (idealized) IPv4 traversal diagram looks like the following:

A Packet Traversing the Netfilter System:

--->[1]--->[ROUTE] --->[3]--->[4]--->
| -
I I
I [ROUTE]

On the left is where packets come in: having passed the simple sanity checks (i.e., not truncated, IP checksum
OK, not a promiscuous receive), they are passed to the netfilter framework’s NF_IP PRE_ROUTING [1]
hook.

Next they enter the routing code, which decides whether the packet is destined for another interface, or a
local process. The routing code may drop packets that are unroutable.

If it’s destined for the box itself, the netfilter framework is called again for the NF_IP LOCAL_IN [2]
hook, before being passed to the process (if any).

If it’s destined to pass to another interface instead, the netfilter framework is called for the
NF_IP FORWARD (3] hook.

The packet then passes a final netfilter hook, the NF_IP_ POST ROUTING [4] hook, before being put on
the wire again.

The NF_IP LOCAL_OUT [5] hook is called for packets that are created locally. Here you can see that
routing occurs after this hook is called: in fact, the routing code is called first (to figure out the source IP
address and some IP options): if you want to alter the routing, you must alter the ‘skb->dst’ field yourself,
as is done in the NAT code.

3. Netfilter Architecture 6

3.1 Netfilter Base

Now we have an example of netfilter for IPv4, you can see when each hook is activated. This is the essence
of netfilter.

Kernel modules can register to listen at any of these hooks. A module that registers a function must specify
the priority of the function within the hook; then when that netfilter hook is called from the core networking
code, each module registered at that point is called in the order of priorites, and is free to manipulate the
packet. The module can then tell netfilter to do one of five things:

1. NF ACCEPT: continue traversal as normal.

2. NF_DROP: drop the packet; don’t continue traversal.

3. NF_STOLEN: I've taken over the packet; don’t continue traversal.
4. NF_QUEUE: queue the packet (usually for userspace handling).

5. NF REPEAT: call this hook again.

The other parts of netfilter (handling queued packets, cool comments) will be covered in the kernel section
later.

Upon this foundation, we can build fairly complex packet manipulations, as shown in the next two sections.

3.2 Packet Selection: IP Tables

A packet selection system called IP Tables has been built over the netfilter framework. It is a direct
descendent of ipchains (that came from ipfwadm, that came from BSD’s ipfw IIRC), with extensibility.
Kernel modules can register a new table, and ask for a packet to traverse a given table. This packet selection
method is used for packet filtering (the ‘filter’ table), Network Address Translation (the ‘nat’ table) and
general pre-route packet mangling (the ‘mangle’ table).

The hooks that are registered with netfilter are as follows (with the functions in each hook in the order that

they are actually called):

~—->PRE------ >[ROUTE] - - ->FWD-—=—=— === >POST------ >

Conntrack | Filter -~ NAT (Src)
Mangle I | Conntrack
NAT (Dst) I [ROUTE]
(QDisc) v |

IN Filter OUT Conntrack

| Conntrack ~ Mangle

I | NAT (Dst)

v | Filter

3.2.1 Packet Filtering

This table, ‘filter’, should never alter packets: only filter them.

One of the advantages of iptables filter over ipchains is that it is small and fast, and it hooks into netfilter
at the NF_IP_LOCAL IN,NF_IP FORWARD and NF_IP LOCAL_OUT points. This means that for
any given packet, there is one (and only one) possible place to filter it. This makes things much simpler

4. Information for Programmers 7

for users than ipchains was. Also, the fact that the netfilter framework provides both the input and output
interfaces for the NF_IP. FORWARD hook means that many kinds of filtering are far simpler.

Note: I have ported the kernel portions of both ipchains and ipfwadm as modules on top of netfilter, enabling
the use of the old ipfwadm and ipchains userspace tools without requiring an upgrade.

3.2.2 NAT

This is the realm of the ‘nat’ table, which is fed packets from two netfilter hooks: for non-local packets,
the NF_IP PRE ROUTING and NF _IP POST ROUTING hooks are perfect for destination and source
alterations respectively. If CONFIG IP NF NAT LOCAL is defined, the hooks NF IP LOCAL_ OUT
and NF_IP LOCAL IN are used for altering the destination of local packets.

This table is slightly different from the ‘filter’ table, in that only the first packet of a new connection will
traverse the table: the result of this traversal is then applied to all future packets in the same connection.

Masquerading, Port Forwarding, Transparent Proxying I divide NAT into Source NAT (where the
first packet has its source altered), and Destination NAT (the first packet has its destination altered).

Masquerading is a special form of Source NAT: port forwarding and transparent proxying are special forms of
Destination NAT. These are now all done using the NAT framework, rather than being independent entities.

3.2.3 Packet Mangling

The packet mangling table (the ‘mangle’ table) is used for actual changing of packet information. It hooks
into netfilter at the NF_IP_ PRE ROUTING and NF_IP LOCAL _ OUT points.

3.3 Connection Tracking

Connection tracking is fundamental to NAT, but it is implemented as a separate module; this allows an
extension to the packet filtering code to simply and cleanly use connection tracking (the ‘state’ module).

3.4 Other Additions

The new flexibility provides both the opportunity to do really funky things, but for people to write enhance-
ments or complete replacements that can be mixed and matched.

4 Information for Programmers

T’ll let you in on a secret: my pet hamster did all the coding. I was just a channel, a ‘front’ if you will, in
my pet’s grand plan. So, don’t blame me if there are bugs. Blame the cute, furry one.

4.1 Understanding ip tables

iptables simply provides a named array of rules in memory (hence the name ‘iptables’), and such information
as where packets from each hook should begin traversal. After a table is registered, userspace can read and
replace its contents using getsockopt() and setsockopt().

4. Information for Programmers 8

iptables does not register with any netfilter hooks: it relies on other modules to do that and feed it the
packets as appropriate; a module must register the netfilter hooks and ip _tables separately, and provide the
mechanism to call ip tables when the hook is reached.

4.1.1 ip_tables Data Structures
For convenience, the same data structure is used to represent a rule by userspace and within the kernel,
although a few fields are only used inside the kernel.

Each rule consists of the following parts:

1. A ‘struct ipt__entry’.

2. Zero or more ‘struct ipt _entry match’ structures, each with a variable amount (0 or more bytes) of
data appended to it.

3. A ‘struct ipt_entry target’ structure, with a variable amount (0 or more bytes) of data appended to
it.

The variable nature of the rule gives a huge amount of flexibility for extensions, as we’ll see, especially
as each match or target can carry an arbitrary amount of data. This does create a few traps, however:
we have to watch out for alignment. We do this by ensuring that the ‘ipt_entry’, ‘ipt _entry match’
and ‘ipt _entry target’ structures are conveniently sized, and that all data is rounded up to the maximal
alignment of the machine using the IPT ALIGN() macro.

The ‘struct ipt__entry’ has the following fields:

1. A ‘struct ipt_ip’ part, containing the specifications for the IP header that it is to match.
2. An ‘nf cache’ bitfield showing what parts of the packet this rule examined.

3. A ‘target offset’ field indicating the offset from the beginning of this rule where the ipt _entry target
structure begins. This should always be aligned correctly (with the IPT ALIGN macro).

4. A ‘next_offset’ field indicating the total size of this rule, including the matches and target. This should
also be aligned correctly using the IPT ALIGN macro.

5. A ‘comefrom’ field used by the kernel to track packet traversal.

6. A ‘struct ipt _counters’ field containing the packet and byte counters for packets which matched this
rule.

The ‘struct ipt_entry match’ and ‘struct ipt _entry target’ are very similar, in that they contain a total
(IPT _ALIGN’ed) length field (‘match size’ and ‘target size’ respectively) and a union holding the name
of the match or target (for userspace), and a pointer (for the kernel).

Because of the tricky nature of the rule data structure, some helper routines are provided:

ipt _get target()

This inline function returns a pointer to the target of a rule.

IPT_MATCH_ITERATE()

This macro calls the given function for every match in the given rule. The function’s first ar-
gument is the ‘struct ipt match entry’, and other arguments (if any) are those supplied to the
IPT MATCH_ ITERATE() macro. The function must return either zero for the iteration to con-
tinue, or a non-zero value to stop.

4. Information for Programmers 9

IPT_ENTRY ITERATE()

This function takes a pointer to an entry, the total size of the table of entries, and a function to call.
The functions first argument is the ‘struct ipt _entry’, and other arguments (if any) are those supplied
to the IPT_ENTRY_ITERATE() macro. The function must return either zero for the iteration to
continue, or a non-zero value to stop.

4.1.2 ip_tables From Userspace

Userspace has four operations: it can read the current table, read the info (hook positions and size of table),
replace the table (and grab the old counters), and add in new counters.

This allows any atomic operation to be simulated by userspace: this is done by the libiptc library, which
provides convenience "add/delete/replace" semantics for programs.

Because these tables are transferred into kernel space, alignment becomes an issue for machines which have
different userspace and kernelspace type rules (eg. Sparc64 with 32-bit userland). These cases are handled
by overriding the definition of IPT ALIGN for these platforms in ‘libiptc.h’.

4.1.3 ip_tables Use And Traversal

The kernel starts traversing at the location indicated by the particular hook. That rule is examined, if
the ‘struct ipt_ip’ elements match, each ‘struct ipt _entry match’ is checked in turn (the match function
associated with that match is called). If the match function returns 0, iteration stops on that rule. If it sets
the ‘hotdrop’ parameter to 1, the packet will also be immediately dropped (this is used for some suspicious
packets, such as in the tcp match function).

If the iteration continues to the end, the counters are incremented, the ‘struct ipt _entry target’ is examined:
if it’s a standard target, the ‘verdict’ field is read (negative means a packet verdict, positive means an offset
to jump to). If the answer is positive and the offset is not that of the next rule, the ‘back’ variable is set,
and the previous ‘back’ value is placed in that rule’s ‘comefrom’ field.

For non-standard targets, the target function is called: it returns a verdict (non-standard targets can’t jump,
as this would break the static loop-detection code). The verdict can be IPT CONTINUE, to continue on
to the next rule.

4.2 Extending iptables

Because I'm lazy, iptables is fairly extensible. This is basically a scam to palm off work onto other people,
which is what Open Source is all about (cf. Free Software, which as RMS would say, is about freedom, and
I was sitting in one of his talks when I wrote this).

Extending iptables potentially involves two parts: extending the kernel, by writing a new module, and
possibly extending the userspace program iptables, by writing a new shared library.

4.2.1 The Kernel

Writing a kernel module itself is fairly simple, as you can see from the examples. One thing to be aware of is
that your code must be re-entrant: there can be one packet coming in from userspace, while another arrives
on an interrupt. In fact in SMP there can be one packet on an interrupt per CPU in 2.3.4 and above.

The functions you need to know about are:

4. Information for Programmers 10

init _module()
This is the entry-point of the module. It returns a negative error number, or 0 if it successfully registers
itself with netfilter.

cleanup module()

This is the exit point of the module; it should unregister itself with netfilter.

ipt _register match()
This is used to register a new match type. You hand it a ‘struct ipt__match’, which is usually declared
as a static (file-scope) variable.

ipt _register target()
This is used to register a new type. You hand it a ‘struct ipt_target’, which is usually declared as a
static (file-scope) variable.

ipt _unregister target()

Used to unregister your target.

ipt _unregister match()

Used to unregister your match.

One warning about doing tricky things (such as providing counters) in the extra space in your new match
or target. On SMP machines, the entire table is duplicated using memcpy for each CPU: if you really want
to keep central information, you should see the method used in the ‘limit’ match.

New Match Functions New match functions are usually written as a standalone module. It’s possible
to have these modules extensible in turn, although it’s usually not necessary. One way would be to use
the netfilter framework’s ‘nf register sockopt’ function to allows users to talk to your module directly.
Another way would be to export symbols for other modules to register themselves, the same way netfilter
and ip _tables do.

The core of your new match function is the struct ipt_match which it passes to ‘ipt_register match()’.
This structure has the following fields:

list
This field is set to any junk, say ‘{ NULL, NULL }'.

name
This field is the name of the match function, as referred to by userspace. The name should match the
name of the module (i.e., if the name is "mac", the module must be "ipt mac.o") for auto-loading to
work.

match

This field is a pointer to a match function, which takes the skb, the in and out device pointers (one of
which may be NULL, depending on the hook), a pointer to the match data in the rule that is worked
on (the structure that was prepared in userspace), the IP offset (non-zero means a non-head fragment),
a pointer to the protocol header (i.e., just past the IP header), the length of the data (ie. the packet
length minus the IP header length) and finally a pointer to a ‘hotdrop’ variable. It should return
non-zero if the packet matches, and can set ‘hotdrop’ to 1 if it returns 0, to indicate that the packet
must be dropped immediately.

4. Information for Programmers 11

checkentry

This field is a pointer to a function which checks the specifications for a rule; if this returns 0, then
the rule will not be accepted from the user. For example, the "tcp" match type will only accept tcp
packets, and so if the ‘struct ipt_ip’ part of the rule does not specify that the protocol must be tcp, a
zero is returned. The tablename argument allows your match to control what tables it can be used in,
and the ‘hook mask’ is a bitmask of hooks this rule may be called from: if your match does not make
sense from some netfilter hooks, you can avoid that here.

destroy

This field is a pointer to a function which is called when an entry using this match is deleted. This
allows you to dynamically allocate resources in checkentry and clean them up here.

This field is set to “THIS MODULE’, which gives a pointer to your module. It causes the usage-count
to go up and down as rules of that type are created and destroyed. This prevents a user removing the
module (and hence cleanup module() being called) if a rule refers to it.

New Targets New targets are also usually written as a standalone module. The discussions under the
above section on ‘New Match Functions’ apply equally here.

The core of your new target is the struct ipt target that it passes to ipt_register target(). This structure
has the following fields:

list
This field is set to any junk, say ‘{ NULL, NULL }’.

name
This field is the name of the target function, as referred to by userspace. The name should match
the name of the module (i.e., if the name is "REJECT", the module must be "ipt REJECT.o") for
auto-loading to work.

target
This is a pointer to the target function, which takes the skbuff, the hook number, the input and output
device pointers (either of which may be NULL), a pointer to the target data, and the position of the
rule in the table. The target function may return either IPT CONTINUE (-1) if traversing should
continue, or a netfilter verdict (NF_ DROP, NF_ ACCEPT, NF_STOLEN etc.).

checkentry
This field is a pointer to a function which checks the specifications for a rule; if this returns 0, then
the rule will not be accepted from the user.

destroy
This field is a pointer to a function which is called when an entry using this target is deleted. This
allows you to dynamically allocate resources in checkentry and clean them up here.

me

This field is set to “THIS MODULE’, which gives a pointer to your module. It causes the usage-count
to go up and down as rules with this as a target are created and destroyed. This prevents a user
removing the module (and hence cleanup module() being called) if a rule refers to it.

4. Information for Programmers 12

New Tables You can create a new table for your specific purpose if you wish. To do this, you call
‘ipt _register table()’, with a ‘struct ipt_ table’, which has the following fields:

list
This field is set to any junk, say ‘{ NULL, NULL }’.

namme

This field is the name of the table function, as referred to by userspace. The name should match the
name of the module (i.e., if the name is "nat", the module must be "iptable nat.o") for auto-loading
to work.

table

This is a fully-populated ‘struct ipt_replace’, as used by userspace to replace a table. The ‘counters’
pointer should be set to NULL. This data structure can be declared ¢ initdata’ so it is discarded
after boot.

valid hooks
This is a bitmask of the IPv4 netfilter hooks you will enter the table with: this is used to check

that those entry points are valid, and to calculate the possible hooks for ipt _match and ipt_target
‘checkentry()’ functions.

lock
This is the read-write spinlock for the entire table; initialize it to RW_LOCK UNLOCKED.

private

This is used internally by the ip tables code.

4.2.2 Userspace Tool

Now you’ve written your nice shiny kernel module, you may want to control the options on it from userspace.
Rather than have a branched version of iptables for each extension, I use the very latest 90’s technology:
furbies. Sorry, I mean shared libraries.

New tables generally don’t require any extension to iptables: the user just uses the ‘-t’ option to make it
use the new table.

The shared library should have an ‘_init()’ function, which will automatically be called upon loading: the
moral equivalent of the kernel module’s ‘init _module()’ function. This should call ‘register match()’ or
‘register _target()’, depending on whether your shared library provides a new match or a new target.

You need to provide a shared library: this can be used to initialize part of the structure, or provide additional
options. I now insist on a shared library even if it doesn’t do anything, to reduce problem reports where the
shares libraries are missing.

There are useful functions described in the ‘iptables.h’ header, especially:

check inverse()
checks if an argument is actually a ‘I, and if so, sets the ‘invert’ flag if not already set. If it returns
true, you should increment optind, as done in the examples.

string to number()

converts a string into a number in the given range, returning -1 if it is malformed or out of range.
‘string_to_number’ rely on ‘strtol’ (see the manpage), meaning that a leading "0x" would make the
number be in Hexadecimal base, a leading "0" would make it be in Octal base.

4. Information for Programmers 13

exit _error()

should be called if an error is found. Usually the first argument is ‘PARAMETER PROBLEM’,
meaning the user didn’t use the command line correctly.

New Match Functions Your shared library’s _init() function hands ‘register match()’ a pointer to a
static ‘struct iptables match’, which has the following fields:

next

This pointer is used to make a linked list of matches (such as used for listing rules). It should be set
to NULL initially.

name

The name of the match function. This should match the library name (eg "tcp" for ‘libipt_tcp.so’).

version

Usually set to the NETFILTER VERSION macro: this is used to ensure that the iptables binary
doesn’t pick up the wrong shared libraries by mistake.

size
The size of the match data for this match; you should use the IPT _ALIGN() macro to ensure it is
correctly aligned.

userspacesize

For some matches, the kernel changes some fields internally (the ‘limit’ target is a case of this). This
means that a simple ‘memcmp()’ is insufficient to compare two rules (required for delete-matching-rule
functionality). If this is the case, place all the fields which do not change at the start of the structure,
and put the size of the unchanging fields here. Usually, however, this will be identical to the ‘size’ field.

help
A function which prints out the option synopsis.

init
This can be used to initialize the extra space (if any) in the ipt entry match structure, and
set any nfcache bits; if you are examining something not expressible using the contents of

‘linux/include/netfilter ipv4.L’, then simply OR in the NFC_UNKNOWN bit. It will be called before
‘parse()’.

parse

This is called when an unrecognized option is seen on the command line: it should return non-zero
if the option was indeed for your library. ‘invert’ is true if a ‘!’ has already been seen. The ‘flags’
pointer is for the exclusive use of your match library, and is usually used to store a bitmask of options
which have been specified. Make sure you adjust the nfcache field. You may extend the size of the
‘ipt_entry match’ structure by reallocating if necessary, but then you must ensure that the size is
passed through the IPT ALIGN macro.

final check

This is called after the command line has been parsed, and is handed the ‘flags’ integer reserved for
your library. This gives you a chance to check that any compulsory options have been specified, for
example: call ‘exit error()’ if this is the case.

4. Information for Programmers 14

print

This is used by the chain listing code to print (to standard output) the extra match information (if
any) for a rule. The numeric flag is set if the user specified the ‘-n’ flag.

save

This is the reverse of parse: it is used by ‘iptables-save’ to reproduce the options which created the
rule.

extra opts

This is a NULL-terminated list of extra options which your library offers. This is merged with the cur-
rent options and handed to getopt long; see the man page for details. The return code for getopt long
becomes the first argument (‘c’) to your ‘parse()’ function.

There are extra elements at the end of this structure for use internally by iptables: you don’t need to set
them.

New Targets Your shared library’s init() function hands ‘register target()’ it a pointer to a static
‘struct iptables target’, which has similar fields to the iptables match structure detailed above.

4.2.3 Using ‘libiptc’

libiptc is the iptables control library, designed for listing and manipulating rules in the iptables kernel
module. While its current use is for the iptables program, it makes writing other tools fairly easy. You need
to be root to use these functions.

The kernel tables themselves are simply a table of rules, and a set of numbers representing entry points.
Chain names ("INPUT", etc) are provided as an abstraction by the library. User defined chains are labelled
by inserting an error node before the head of the user-defined chain, which contains the chain name in the
extra data section of the target (the builtin chain positions are defined by the three table entry points).

The following standard targets are supported: ACCEPT, DROP, QUEUE (which are tramslated to
NF_ ACCEPT, NF_DROP, and NF_QUEUE, respectively), RETURN (which is translated to a special
IPT RETURN value handled by ip tables), and JUMP (which is translated from the chain name to an
actual offset within the table).

When ‘iptc_init()’ is called, the table, including the counters, is read. This table is manipulated
by the ‘iptc insert entry()’, ‘iptc_replace entry()’, ‘iptc_append entry()’, ‘iptc_delete entry()’,
‘iptc_ delete_num__entry()’, ‘iptc_flush _entries()’, ‘iptc_zero__entries()’, ‘iptc_ create chain()’
‘iptc_ delete chain()’, and ‘iptc_set _policy()’ functions.

The table changes are not written back until the ‘iptc_commit()’ function is called. This means it is possible
for two library users operating on the same chain to race each other; locking would be required to prevent
this, and it is not currently done.

There is no race with counters, however; counters are added back in to the kernel in such a way that counter
increments between the reading and writing of the table still show up in the new table.

There are various helper functions:
iptc_first chain()
This function returns the first chain name in the table.

iptc_next chain()

This function returns the next chain name in the table: NULL means no more chains.

4. Information for Programmers 15

iptc_ builtin()
Returns true if the given chain name is the name of a builtin chain.
iptc_first _rule()

This returns a pointer to the first rule in the given chain name: NULL for an empty chain.

iptc_next rule()

This returns a pointer to the next rule in the chain: NULL means the end of the chain.

iptc_get target()

This gets the target of the given rule. If it’s an extended target, the name of that target is returned.
If it’s a jump to another chain, the name of that chain is returned. If it’s a verdict (eg. DROP), that
name is returned. If it has no target (an accounting-style rule), then the empty string is returned.

Note that this function should be used instead of using the value of the ‘verdict’ field of the ipt__entry
structure directly, as it offers the above further interpretations of the standard verdict.

iptc_get policy()
This gets the policy of a builtin chain, and fills in the ‘counters’ argument with the hit statistics on
that policy.

iptc_strerror()

This function returns a more meaningful explanation of a failure code in the iptc library. If a function
fails, it will always set errno: this value can be passed to iptc_strerror() to yield an error message.

4.3 Understanding NAT

Welcome to Network Address Translation in the kernel. Note that the infrastructure offered is designed more
for completeness than raw efficiency, and that future tweaks may increase the efficiency markedly. For the
moment I’'m happy that it works at all.

NAT is separated into connection tracking (which doesn’t manipulate packets at all), and the NAT code
itself. Connection tracking is also designed to be used by an iptables modules, so it makes subtle distinctions
in states which NAT doesn’t care about.

4.3.1 Connection Tracking
Connection tracking hooks into high-priority N IP LOCAL OUT and NF_IP PRE ROUTING hooks,
in order to see packets before they enter the system.

The nfct field in the skb is a pointer to inside the struct ip conntrack, at one of the infos|| array. Hence we
can tell the state of the skb by which element in this array it is pointing to: this pointer encodes both the
state structure and the relationship of this skb to that state.

The best way to extract the ‘nfct’ field is to call ‘ip _conntrack get()’, which returns NULL if it’s not set, or
the connection pointer, and fills in ctinfo which describes the relationship of the packet to that connection.
This enumerated type has several values:

IP_CT_ ESTABLISHED

The packet is part of an established connection, in the original direction.

IP_CT RELATED

The packet is related to the connection, and is passing in the original direction.

4. Information for Programmers 16

IP_CT_NEW

The packet is trying to create a new connection (obviously, it is in the original direction).

IP_CT_ESTABLISHED + IP_CT_IS_REPLY

The packet is part of an established connection, in the reply direction.

IP_CT RELATED + IP_CT_ IS REPLY

The packet is related to the connection, and is passing in the reply direction.

Hence a reply packet can be identified by testing for >= IP_CT IS REPLY.

4.4 Extending Connection Tracking/NAT

These frameworks are designed to accommodate any number of protocols and different mapping types. Some
of these mapping types might be quite specific, such as a load-balancing/fail-over mapping type.

Internally, connection tracking converts a packet to a "tuple", representing the interesting parts of the
packet, before searching for bindings or rules which match it. This tuple has a manipulatable part, and a
non-manipulatable part; called "src" and "dst", as this is the view for the first packet in the Source NAT
world (it’d be a reply packet in the Destination NAT world). The tuple for every packet in the same packet
stream in that direction is the same.

For example, a TCP packet’s tuple contains the manipulatable part: source IP and source port, the non-
manipulatable part: destination IP and the destination port. The manipulatable and non-manipulatable
parts do not need to be the same type though; for example, an ICMP packet’s tuple contains the manipulat-
able part: source IP and the ICMP id, and the non-manipulatable part: the destination IP and the ICMP
type and code.

Every tuple has an inverse, which is the tuple of the reply packets in the stream. For example, the inverse
of an ICMP ping packet, icmp id 12345, from 192.168.1.1 to 1.2.3.4, is a ping-reply packet, icmp id 12345,
from 1.2.3.4 to 192.168.1.1.

These tuples, represented by the ‘struct ip _conntrack tuple’, are used widely. In fact, together with the
hook the packet came in on (which has an effect on the type of manipulation expected), and the device
involved, this is the complete information on the packet.

Most tuples are contained within a ‘struct ip__conntrack tuple hash’, which adds a doubly linked list entry,
and a pointer to the connection that the tuple belongs to.

A connection is represented by the ‘struct ip_conntrack’ it has two ‘struct ip_conntrack tuple hash’
fields: one referring to the direction of the original packet (tuplehash[IP CT DIR_ORIGINALJ), and one
referring to packets in the reply direction (tuplehash[IP _CT_ DIR_REPLY]).

Anyway, the first thing the NAT code does is to see if the connection tracking code managed to extract a
tuple and find an existing connection, by looking at the skbuff’s nfct field; this tells us if it’s an attempt on
a new connection, or if not, which direction it is in; in the latter case, then the manipulations determined
previously for that connection are done.

If it was the start of a new connection, we look for a rule for that tuple, using the standard iptables traversal
mechanism, on the ‘nat’ table. If a rule matches, it is used to initialize the manipulations for both that
direction and the reply; the connection-tracking code is told that the reply it should expect has changed.
Then, it’s manipulated as above.

If there is no rule, a ‘null’ binding is created: this usually does not map the packet, but exists to ensure
we don’t map another stream over an existing one. Sometimes, the null binding cannot be created, because

4. Information for Programmers 17

we have already mapped an existing stream over it, in which case the per-protocol manipulation may try to
remap it, even though it’s nominally a ‘null’ binding.

4.4.1 Standard NAT Targets

NAT targets are like any other iptables target extensions, except they insist on being used only in the
‘nat’ table. Both the SNAT and DNAT targets take a ‘struct ip nat multi range’ as their extra data;
this is used to specify the range of addresses a mapping is allowed to bind into. A range element, ‘struct
ip_nat range’ consists of an inclusive minimum and maximum IP address, and an inclusive maximum and
minimum protocol-specific value (eg. TCP ports). There is also room for flags, which say whether the IP
address can be mapped (sometimes we only want to map the protocol-specific part of a tuple, not the IP),
and another to say that the protocol-specific part of the range is valid.

A multi-range is an array of these ‘struct ip _nat range’ elements; this means that a range could be "1.1.1.1-
1.1.1.2 ports 50-55 AND 1.1.1.3 port 80". Each range element adds to the range (a union, for those who like
set theory).

4.4.2 New Protocols

Inside The Kernel Implementing a new protocol first means deciding what the manipulatable and non-
manipulatable parts of the tuple should be. Everything in the tuple has the property that it identifies the
stream uniquely. The manipulatable part of the tuple is the part you can do NAT with: for TCP this is the
source port, for ICMP it’s the icmp ID; something to use as a "stream identifier". The non-manipulatable
part is the rest of the packet that uniquely identifies the stream, but we can’t play with (eg. TCP destination
port, ICMP type).

Once you’ve decided this, you can write an extension to the connection-tracking code in the di-
rectory, and go about populating the ‘ip conntrack protocol’ structure which you need to pass to
‘ip_conntrack register protocol()’.

The fields of ‘struct ip _conntrack protocol’ are:

list

Set it to ’{ NULL, NULL }’; used to sew you into the list.
proto

Your protocol number; see ‘/etc/protocols’.
name

The name of your protocol. This is the name the user will see; it’s usually best if it’s the canonical
name in ‘/etc/protocols’.

pkt to tuple

The function which fills out the protocol specific parts of the tuple, given the packet. The ‘datah’
pointer points to the start of your header (just past the IP header), and the datalen is the length of
the packet. If the packet isn’t long enough to contain the header information, return 0; datalen will
always be at least 8 bytes though (enforced by framework).

invert tuple

This function is simply used to change the protocol-specific part of the tuple into the way a reply to
that packet would look.

4. Information for Programmers 18

print_tuple

This function is used to print out the protocol-specific part of a tuple; usually it’s sprintf()’d into the
buffer provided. The number of buffer characters used is returned. This is used to print the states for
the /proc entry.

print _conntrack
This function is used to print the private part of the conntrack structure, if any, also used for printing
the states in /proc.

packet

This function is called when a packet is seen which is part of an established connection. You get a
pointer to the conntrack structure, the IP header, the length, and the ctinfo. You return a verdict for
the packet (usually NF_ACCEPT), or -1 if the packet is not a valid part of the connection. You can
delete the connection inside this function if you wish, but you must use the following idiom to avoid
races (see ip_conntrack proto icmp.c):

if (del_timer (&ct->timeout))
ct->timeout.function((unsigned long)ct);
new

This function is called when a packet creates a connection for the first time; there is no ctinfo arg, since
the first packet is of ctinfo IP_ CT NEW by definition. It returns 0 to fail to create the connection,
or a connection timeout in jiffies.

Once you’ve written and tested that you can track your new protocol, it’s time to teach NAT how to
translate it. This means writing a new module; an extension to the NAT code and go about populating the
‘ip_nat_protocol’ structure which you need to pass to ‘ip_nat protocol register()’.

list
Set it to ’{ NULL, NULL }’; used to sew you into the list.

name
The name of your protocol. This is the name the user will see; it’s best if it’s the canonical name in
‘ /etc/protocols’ for userspace auto-loading, as we’ll see later.

protonum

Your protocol number; see ‘/etc/protocols’.

manip pkt

This is the other half of connection tracking’s pkt to tuple function: you can think of it as "tu-
ple to_pkt". There are some differences though: you get a pointer to the start of the IP header, and
the total packet length. This is because some protocols (UDP, TCP) need to know the IP header.
You're given the ip_nat tuple manip field from the tuple (i.e., the "src" field), rather than the entire
tuple, and the type of manipulation you are to perform.

in range
This function is used to tell if manipulatable part of the given tuple is in the given range. This function

is a bit tricky: we’re given the manipulation type which has been applied to the tuple, which tells us
how to interpret the range (is it a source range or a destination range we’re aiming for?).

This function is used to check if an existing mapping puts us in the right range, and also to check if
no manipulation is necessary at all.

4. Information for Programmers 19

unique _tuple

This function is the core of NAT: given a tuple and a range, we’re to alter the per-protocol part of the
tuple to place it within the range, and make it unique. If we can’t find an unused tuple in the range,
return 0. We also get a pointer to the conntrack structure, which is required for ip_nat_used tuple().

The usual approach is to simply iterate the per-protocol part of the tuple through the range, checking
‘ip_nat_used tuple()’ on it, until one returns false.

Note that the null-mapping case has already been checked: it’s either outside the range given, or
already taken.

If IP NAT RANGE PROTO_ SPECIFIED isn’t set, it means that the user is doing NAT, not
NAPT: do something sensible with the range. If no mapping is desirable (for example, within TCP, a
destination mapping should not change the TCP port unless ordered to), return 0.

print
Given a character buffer, a match tuple and a mask, write out the per-protocol parts and return the
length of the buffer used.

print _range

Given a character buffer and a range, write out the per-protocol part of the range, and return the
length of the buffer used. This won’t be called if the IP. NAT RANGE PROTO_ SPECIFIED flag
wasn’t set for the range.

4.4.3 New NAT Targets

This is the really interesting part. You can write new NAT targets which provide a new mapping type: two
extra targets are provided in the default package: MASQUERADE and REDIRECT. These are fairly simple
to illustrate the potential and power of writing a new NAT target.

These are written just like any other iptables targets, but internally they will extract the connection and
call ip_nat_setup info()’.

4.4.4 Protocol Helpers

Protocol helpers for connection tracking allow the connection tracking code to understand protocols which
use multiple network connections (eg. FTP) and mark the ‘child’ connections as being related to the initial
connection, usually by reading the related address out of the data stream.

Protocol helpers for NAT do two things: firstly allow the NAT code to manipulate the data stream to change
the address contained within it, and secondly to perform NAT on the related connection when it comes in,
based on the original connection.

4.4.5 Connection Tracking Helper Modules

Description The duty of a connection tracking module is to specify which packets belong to an already
established connection. The module has the following means to do that:

e Tell netfilter which packets our module is interested in (most helpers operate on a particular port).

e Register a function with netfilter. This function is called for every packet which matches the criteria
above.

e An ‘ip conntrack expect_related()’ function which can be called from there to tell netfilter to expect
a related connection.

4. Information for Programmers 20

Structures and Functions Available Your kernel module’s init function has to call
‘ip_conntrack helper register()’ with a pointer to a ‘struct ip conntrack helper’. This struct has
the following fields:

list
This is the header for the linked list. Netfilter handles this list internally. Just initialize it with ‘{
NULL, NULL }’.

tuple
This is a ‘struct ip_conntrack tuple’ which specifies the packets our conntrack helper module is
interested in.

mask
Again a ‘struct ip__conntrack tuple’. This mask specifies which bits of tuple are valid.

help

The function which netfilter should call for each packet matching tuple+mask

Example skeleton of a conntrack helper module

#define FOO_PORT 111

static int foo_help(const struct iphdr #*iph, size_t len,
struct ip_conntrack *ct,

enum ip_conntrack_info ctinfo)

{
/* analyze the data passed on this connection and
decide how related packets will look like */
if (there_will_be_new_packets_related_to_this_connection)
{
t = new_tuple_specifying_related_packets;
ip_conntrack_expect_related(ct, &t);
/* save information important for NAT in
ct->help.ct_foo_info; */
}
return NF_ACCEPT;
}

static struct ip_conntrack_helper foo;

static int __init init(void)
{

memset (&foo, 0, sizeof (struct ip_conntrack_helper);

/* we are interested in all TCP packets with destport 111 x/
foo.tuple.dst.protonum = IPPROTO_TCP;
foo.tuple.dst.u.tcp.port = htons(FOO_PORT);
foo.mask.dst.protonum = OxFFFF;

foo.mask.dst.u.tcp.port = OxFFFF;

foo.help = foo_help;

4. Information for Programmers 21

return ip_conntrack_helper_register (&foo);

static void __exit fini(void)
{

ip_conntrack_helper_unregister(&foo);

4.4.6 NAT helper modules

Description NAT helper modules do some application specific NAT handling. Usually this includes on-
the-fly manipulation of data: think about the PORT command in FTP, where the client tells the server
which IP/port to connect to. Therefor an FTP helper module must replace the IP/port after the PORT
command in the FTP control connection.

If we are dealing with TCP, things get slightly more complicated. The reason is a possible change of the
packet size (FTP example: the length of the string representing an IP /port tuple after the PORT command
has changed). If we change the packet size, we have a syn/ack difference between left and right side of the
NAT box. (i.e. if we had extended one packet by 4 octets, we have to add this offset to the TCP sequence
number of each following packet).

Special NAT handling of all related packets is required, too. Take as example again FTP, where all incoming
packets of the DATA connection have to be NATed to the IP/port given by the client with the PORT
command on the control connection, rather than going through the normal table lookup.

e callback for the packet causing the related connection (foo help)

e callback for all related packets (foo nat_expected)

Structures and Functions Available Your nat helper module’s ‘nit()’ function calls
)

‘ip_nat_helper register()
members:

with a pointer to a ‘struct ip_nat helper’. This struct has the following

list

Just again the list header for netfilters internal use. Initialize this with { NULL, NULL }.
tuple

a ‘struct ip__conntrack tuple’ describing which packets our NAT helper is interested in.

mask

a ‘struct ip__conntrack tuple’, telling netfilter which bits of tuple are valid.

help
The help function which is called for each packet matching tuple+mask.

name

The unique name this NAT helper is identified by.

This is exactly the same as writing a connection tracking helper.

You can also indicate your module is ready to handle the NAT of any expected connections (presumably set
up by a connection tracking module), using the ‘ip_nat expect register()’ function, which takes a ‘struct
ip_nat_expect’. This struct has the following members:

4. Information for Programmers 22

list
Just again the list header for netfilters internal use. Initialize this with { NULL, NULL }.

expect

the function which does NAT for expected connections. Returns true if it has handled the connection,
otherwise the next registered expect function will be called to see if it handles the packet. If it returns
true, the function must fill in the verdict.

Example NAT helper module

#define FOO_PORT 111

static int foo_nat_expected(struct sk_buff *#*pksb,
unsigned int hooknum,
struct ip_conntrack *ct,
struct ip_nat_info *info,
struct ip_conntrack *master,
struct ip_nat_info *masterinfo,

unsigned int *verdict)

/* called whenever a related packet (as specified in the connection tracking

module) arrives

params: pksb packet buffer
hooknum HOOK the call comes from (POST_ROUTING, PRE_ROUTING)
ct information about this (the related) connection
info &ct->nat.info

master information about the master connection
masterinfo &master->nat.info

verdict what to do with the packet if we return 1.

{
/* Check that this was from foo_expect, not ftp_expect, etc */
/* Then just change ip/port of the packet to the masqueraded
values (read from master->tuplehash), to map it the same way,
call ip_nat_setup_info, set *verdict, return 1. */
}

static int foo_help(struct ip_conntrack *ct,
struct ip_nat_info *info,
enum ip_conntrack_info ctinfo,
unsigned int hooknum,
struct sk_buff *xpksb)

/* called for the packet causing related packets

params: ct information about tracked connection

info (STATE: related, new, established, ...)
hooknum HOOK the call comes from (POST_ROUTING, PRE_ROUTING)
pksb packet buffer

*/

/* extract information about future related packets (you can
share information with the connection tracking’s foo_help).
Exchange address/port with masqueraded values, insert tuple

about related packets */

4. Information for Programmers 23

static struct ip_nat_expect foo_expect = {
{ NULL, NULL },

foo_nat_expected };
static struct ip_nat_helper hlpr;

static int __init(void)
{
int ret;
if ((ret = ip_nat_expect_register (&foo_expect)) == 0) {
memset (&hlpr, 0, sizeof(struct ip_nat_helper));
hlpr.list = { NULL, NULL };
hlpr.tuple.dst.protonum = IPPROTO_TCP;
hlpr.tuple.dst.u.tcp.port = htons(FOO_PORT);
hlpr.mask.dst.protonum = OxFFFF;

hlpr.mask.dst.u.tcp.port = OxFFFF;
hlpr.help = foo_help;

ret = ip_nat_helper_register (hlpr);
if (ret !'= 0)
ip_nat_expect_unregister(&foo_expect);
}

return ret;

static void __exit(void)
{
ip_nat_expect_unregister(&foo_expect) ;

ip_nat_helper_unregister (&hlpr);

4.5 Understanding Netfilter

Netfilter is pretty simple, and is described fairly thoroughly in the previous sections. However, sometimes
it’s necessary to go beyond what the NAT or ip tables infrastructure offers, or you may want to replace
them entirely.

One important issue for netfilter (well, in the future) is caching. Each skb has an ‘nfcache’ field: a bitmask
of what fields in the header were examined, and whether the packet was altered or not. The idea is that
each hook off netfilter OR’s in the bits relevant to it, so that we can later write a cache system which will
be clever enough to realize when packets do not need to be passed through netfilter at all.

The most important bits are NFC_ALTERED, meaning the packet was altered (this is already used for
IPv4’s NF_IP _LOCAL_ OUT hook, to reroute altered packets), and NFC_UNKNOWN, which means
caching should not be done because some property which cannot be expressed was examined. If in doubt,
simply set the NFC_ UNKNOWN flag on the skb’s nfcache field inside your hook.

4. Information for Programmers 24

4.6 Writing New Netfilter Modules
4.6.1 Plugging Into Netfilter Hooks

To receive/mangle packets inside the kernel, you can simply write a module which registers a "netfilter
hook". This is basically an expression of interest at some given point; the actual points are protocol-specific,
and defined in protocol-specific netfilter headers, such as "netfilter ipv4.h".

To register and unregister netfilter hooks, you wuse the functions ‘nf register hook’ and
‘nf unregister hook’. These each take a pointer to a ‘struct nf hook ops’, which you populate as
follows:

list
Used to sew you into the linked list: set to ’{ NULL, NULL }’

hook

The function which is called when a packet hits this hook point. Your function must return
NF ACCEPT, NF_DROP or NF_QUEUE. If NF ACCEPT, the next hook attached to that point
will be called. If NF DROP, the packet is dropped. If NF QUEUE, it’s queued. You receive a pointer
to an skb pointer, so you can entirely replace the skb if you wish.

flush

Currently unused: designed to pass on packet hits when the cache is flushed. May never be imple-
mented: set it to NULL.

pf
The protocol family, eg, ‘PF _INET’ for IPv4.

hooknum

The number of the hook you are interested in, eg ‘NF IP LOCAL_ OUT".

4.6.2 Processing Queued Packets

This interface is currently used by ip _queue; you can register to handle queued packets for a given protocol.
This has similar semantics to registering for a hook, except you can block processing the packet, and you
only see packets for which a hook has replied ‘NF _QUEUE’.

The two functions used to register interest in queued packets are ‘nf register queue handler()’ and
‘nf unregister queue handler()’. The function you register will be called with the ‘void *’ pointer you
handed it to ‘nf register queue handler()’.

If no-one is registered to handle a protocol, then returning NF QUEUE is equivalent to returning
NF DROP.

Once you have registered interest in queued packets, they begin queueing. You can do whatever you want
with them, but you must call ‘nf reinject()’ when you are finished with them (don’t simply kfree skb()
them). When you reinject an skb, you hand it the skb, the ‘struct nf info’ which your queue handler was
given, and a verdict: NF_DROP causes them to be dropped, NF_ACCEPT causes them to continue to
iterate through the hooks, NF _QUEUE causes them to be queued again, and NF REPEAT causes the
hook which queued the packet to be consulted again (beware infinite loops).

You can look inside the ‘struct nf info’ to get auxiliary information about the packet, such as the interfaces
and hook it was on.

4. Information for Programmers 25

4.6.3 Receiving Commands From Userspace

It is common for netfilter components to want to interact with userspace. The method for doing this is
by using the setsockopt mechanism. Note that each protocol must be modified to call nf setsockopt() for
setsockopt numbers it doesn’t understand (and nf getsockopt() for getsockopt numbers), and so far only
IPv4, IPv6 and DECnet have been modified.

Using a now-familiar technique, we register a ‘struct nf sockopt ops’ using the nf register sockopt() call.
The fields of this structure are as follows:

list
Used to sew it into the linked list: set to ’{ NULL, NULL }’.

pf
The protocol family you handle, eg. PF_INET.
set optmin

and

set optmax
These specify the (exclusive) range of setsockopt numbers handled. Hence using 0 and 0 means you
have no setsockopt numbers.

set
This is the function called when the user calls one of your setsockopts. You should check that they
have NET ADMIN capability within this function.

get optmin

and

get optmax
These specify the (exclusive) range of getsockopt numbers handled. Hence using 0 and 0 means you
have no getsockopt numbers.

get

This is the function called when the user calls one of your getsockopts. You should check that they
have NET ADMIN capability within this function.

The final two fields are used internally.

4.7 Packet Handling in Userspace

Using the libipq library and the ‘ip__queue’ module, almost anything which can be done inside the kernel can
now be done in userspace. This means that, with some speed penalty, you can develop your code entirely
in userspace. Unless you are trying to filter large bandwidths, you should find this approach superior to
in-kernel packet mangling.

In the very early days of netfilter, I proved this by porting an embryonic version of iptables to userspace.
Netfilter opens the doors for more people to write their own, fairly efficient netmangling modules, in whatever
language they want.

5. Translating 2.0 and 2.2 Packet Filter Modules 26

5 Translating 2.0 and 2.2 Packet Filter Modules

Look at the ip_fw__compat.c file for a simple layer which should make porting quite simple.

6 The Test Suite

Within the CVS repository lives a test suite: the more the test suite covers, the greater confidence you can
have that changes to the code hasn’t quietly broken something. Trivial tests are at least as important as
tricky tests: it’s the trivial tests which simplify the complex tests (since you know the basics work fine before
the complex test gets run).

The tests are simple: they are just shell scripts under the testsuite/ subdirectory which are supposed to
succeed. The scripts are run in alphabetical order, so ‘Oltest’ is run before ‘02test’. Currently there are 5
test directories:

OOnetfilter/

General netfilter framework tests.

Oliptables/
iptables tests.

02conntrack/

connection tracking tests.

03NAT/
NAT tests

04ipchains-compat/
ipchains/ipfwadm compatibility tests

Inside the testsuite/ directory is a script called ‘test.sh’. It configures two dummy interfaces (tap0 and tapl),
turns forwarding on, and removes all netfilter modules. Then it runs through the directories above and runs
each of their test.sh scripts until one fails. This script takes two optional arguments: ‘-v’ meaning to print
out each test as it proceeds, and an optional test name: if this is given, it will skip over all tests until this
one is found.

6.1 Writing a Test

Create a new file in the appropriate directory: try to number your test so that it gets run at the right time.
For example, in order to test ICMP reply tracking (02conntrack/02reply.sh), we need to first check that
outgoing ICMPs are tracked properly (02conntrack/0Olsimple.sh).

It’s usually better to create many small files, each of which covers one area, because it helps to isolate
problems immediately for people running the testsuite.

If something goes wrong in the test, simply do an ‘exit 1’, which causes failure; if it’s something you expect
may fail, you should print a unique message. Your test should end with ‘exit 0’ if everything goes OK. You
should check the success of every command, either using ‘set -e’ at the top of the script, or appending ‘||
exit 1’ to the end of each command.

The helper functions ‘load module’ and ‘remove module’ can be used to load modules: you should never
rely on autoloading in the testsuite unless that is what you are specifically testing.

6. The Test Suite 27

6.2 Variables And Environment

You have two play interfaces: tap0 and tapl. Their interface addresses are in variables $TAPO and $TAP1
respectively. They both have netmasks of 255.255.255.0; their networks are in $TAPONET and $TAPINET
respectively.

There is an empty temporary file in $TMPFILE. It is deleted at the end of your test.

Your script will be run from the testsuite/ directory, wherever it is. Hence you should access tools (such as
iptables) using path starting with .. /userspace’.

Your script can print out more information if §VERBOSE is set (meaning that the user specified ‘v’ on the
command line).

6.3 Useful Tools

There are several useful testsuite tools in the "tools" subdirectory: each one exits with a non-zero exit status
if there is a problem.

6.3.1 gen ip

You can generate IP packets using ‘gen ip’, which outputs an IP packet to standard input. You can feed
packets in the tap0 and tapl by sending standard output to /dev/tap0 and /dev/tapl (these are created
upon first running the testsuite if they don’t exist).

gen_ip is a simplistic program which is currently very fussy about its argument order. First are the general
optional arguments:

FRAG=offset,length

Generate the packet, then turn it into a fragment at the following offset and length.

MF
Set the ‘More Fragments’ bit on the packet.

MAC=xX:XX:XX:XX:XX:XX

Set the source MAC address on the packet.

TOS=tos
Set the TOS field on the packet (0 to 255).

Next come the compulsory arguments:

source ip

Source IP address of the packet.

dest ip
Destination IP address of the packet.

length
Total length of the packet, including headers.

protocol

Protocol number of the packet, eg 17 = UDP.

6. The Test Suite 28

Then the arguments depend on the protocol: for UDP (17), they are the source and destination port
numbers. For ICMP (1), they are the type and code of the ICMP message: if the type is 0 or 8 (ping-reply
or ping), then two additional arguments (the ID and sequence fields) are required. For TCP, the source
and destination ports, and flags ("SYN", "SYN/ACK", "ACK", "RST" or "FIN") are required. There are
three optional arguments: "OPT=" followed by a comma-separated list of options, "SYN=" followed by a
sequence number, and "ACK=" followed by a sequence number. Finally, the optional argument "DATA"
indicates that the payload of the TCP packet is to be filled with the contents of standard input.

6.3.2 rcv_ip

You can see IP packets using ‘rcv_ip’, which prints out the command line as close as possible to the original
value fed to gen ip (fragments are the exception).

This is extremely useful for analyzing packets. It takes two compulsory arguments:

wait time

The maximum time in seconds to wait for a packet from standard input.

iterations

The number of packets to receive.

There is one optional argument, "DATA", which causes the payload of a TCP packet to be printed on
standard output after the packet header.

The standard way to use ‘rcv_ip’ in a shell script is as follows:

Set up job control, so we can use & in shell scripts.

set -m

Wait two seconds for one packet from tapO
../tools/rcv_ip 2 1 < /dev/tapO > $TMPFILE &

Make sure that rcv_ip has started running.
sleep 1

Send a ping packet
../tools/gen_ip $TAPINET.2 $TAPONET.2 100 1 8 O 55 57 > /dev/tapl || exit 1

Wait for rcv_ip,
if wait %../tools/rcv_ip; then :
else
echo rcv_ip failed:
cat $TMPFILE
exit 1
fi

6.3.3 gen err
This program takes a packet (as generated by gen ip, for example) on standard input, and turns it into an
ICMP error.

It takes three arguments: a source IP address, a type and a code. The destination IP address will be set to
the source IP address of the packet fed in standard input.

7. Motivation 29

6.3.4 local ip

This takes a packet from standard input and injects it into the system from a raw socket. This give the
appearance of a locally-generated packet (as separate from feeding a packet in one of the ethertap devices,
which looks like a remotely-generated packet).

6.4 Random Advice

All the tools assume they can do everything in one read or write: this is true for the ethertap devices, but
might not be true if you’re doing something tricky with pipes.

dd can be used to cut packets: dd has an obs (output block size) option which can be used to make it output
the packet in a single write.

Test for success first: eg. testing that packets are successfully blocked. First test that packets pass through
normally, then test that some packets are blocked. Otherwise an unrelated failure could be stopping the
packets...

Try to write exact tests, not ‘throw random stuff and see what happens’ tests. If an exact test goes wrong,
it’s a useful thing to know. If a random test goes wrong once, it doesn’t help much.

If a test fails without a message, you can add ‘-x’ to the top line of the script (ie. ‘#! /bin/sh -x’) to see
what commands it’s running.

If a test fails randomly, check for random network traffic interfering (try downing all your external interfaces).
Sitting on the same network as Andrew Tridgell, I tend to get plagued by Windows broadcasts, for example.

7 Motivation

As T was developing ipchains, I realized (in one of those blinding-flash-while-waiting-for-entree moments in
a Chinese restaurant in Sydney) that packet filtering was being done in the wrong place. I can’t find it now,
but I remember sending mail to Alan Cox, who kind of said ‘why don’t you finish what you’re doing, first,
even though you’re probably right’. In the short term, pragmatism was to win over The Right Thing.

After I finished ipchains, which was initially going to be a minor modification of the kernel part of ipfwadm,
and turned into a larger rewrite, and wrote the HOWTO, I became aware of just how much confusion there
is in the wider Linux community about issues like packet filtering, masquerading, port forwarding and the
like.

This is the joy of doing your own support: you get a closer feel for what the users are trying to do, and what
they are struggling with. Free software is most rewarding when it’s in the hands of the most users (that’s
the point, right?), and that means making it easy. The architecture, not the documentation, was the key
flaw.

So I had the experience, with the ipchains code, and a good idea of what people out there were doing. There
were only two problems.

Firstly, I didn’t want to get back into security. Being a security consultant is a constant moral tug-of-war
between your conscience and your wallet. At a fundamental level, you are selling the feeling of security,
which is at odds with actual security. Maybe working in a military setting, where they understand security,
it’d be different.

The second problem is that newbie users aren’t the only concern; an increasing number of large companies
and ISPs are using this stuff. I needed reliable input from that class of users if it was to scale to tomorrow’s
home users.

8. Thanks 30

These problems were resolved, when I ran into David Bonn, of WatchGuard fame, at Usenix in July 1998.
They were looking for a Linux kernel coder; in the end we agreed that I’d head across to their Seattle offices
for a month and we’d see if we could hammer out an agreement whereby they’d sponsor my new code, and
my current support efforts. The rate we agreed on was more than I asked, so I didn’t take a pay cut. This
means I don’t have to even think about external conslutting for a while.

Exposure to WatchGuard gave me exposure to the large clients I need, and being independent from them
allowed me to support all users (eg. WatchGuard competitors) equally.

So I could have simply written netfilter, ported ipchains over the top, and been done with it. Unfortunately,
that would leave all the masquerading code in the kernel: making masquerading independent from filtering
is the one of the major wins point of moving the packet filtering points, but to do that masquerading also
needed to be moved over to the netfilter framework as well.

Also, my experience with ipfwadm’s ‘interface-address’ feature (the one I removed in ipchains) had taught
me that there was no hope of simply ripping out the masquerading code and expecting someone who needed
it to do the work of porting it onto netfilter for me.

So I needed to have at least as many features as the current code; preferably a few more, to encourage niche
users to become early adopters. This means replacing transparent proxying (gladly!), masquerading and
port forwarding. In other words, a complete NAT layer.

Even if T had decided to port the existing masquerading layer, instead of writing a generic NAT system,
the masquerading code was showing its age, and lack of maintenance. See, there was no masquerading
maintainer, and it shows. It seems that serious users generally don’t use masquerading, and there aren’t
many home users up to the task of doing maintenance. Brave people like Juan Ciarlante were doing fixes,
but it had reached to the stage (being extended over and over) that a rewrite was needed.

Please note that I wasn’t the person to do a NAT rewrite: I didn’t use masquerading any more, and I'd not
studied the existing code at the time. That’s probably why it took me longer than it should have. But the
result is fairly good, in my opinion, and I sure as hell learned a lot. No doubt the second version will be
even better, once we see how people use it.

8 Thanks

Thanks to those who helped, expecially Harald Welte for writing the Protocol Helpers section.

