
Linux 2.4 NAT HOWTO

Rusty Russell, mailing list netfilter@lists.samba.org $Revision: 1.13 $ $Date: 2001/05/12 02:35:03 $

This document describes how to do masquerading, transparent proxying, port forwarding, and other forms of

Network Address Translations with the 2.4 Linux Kernels.

Contents

1 Introduction 2

2 Where is the o�cial Web Site and List? 2

2.1 What is Network Address Translation? . 2

2.2 Why Would I Want To Do NAT? . 2

3 The Two Types of NAT 3

4 Quick Translation From 2.0 and 2.2 Kernels 3

4.1 I just want masquerading! Help! . 4

4.2 What about ipmasqadm? . 4

5 Controlling What To NAT 5

5.1 Simple Selection using iptables . 5

5.2 Finer Points Of Selecting What Packets To Mangle . 6

6 Saying How To Mangle The Packets 6

6.1 Source NAT . 6

6.1.1 Masquerading . 6

6.2 Destination NAT . 7

6.2.1 Redirection . 7

6.3 Mappings In Depth . 7

6.3.1 Selection Of Multiple Addresses in a Range . 8

6.3.2 Creating Null NAT Mappings . 8

6.3.3 Standard NAT Behaviour . 8

6.3.4 Implicit Source Port Mapping . 8

6.3.5 What Happens When NAT Fails . 8

6.3.6 Multiple Mappings, Overlap and Clashes . 8

6.3.7 Altering the Destination of Locally-Generated Connections 9

7 Special Protocols 9

1. Introduction 2

8 Caveats on NAT 9

9 Source NAT and Routing 9

10 Destination NAT Onto the Same Network 10

11 Thanks 10

1 Introduction

Welcome, gentle reader.

You are about to delve into the fascinating (and sometimes horrid) world of NAT: Network Address Trans-

lation, and this HOWTO is going to be your somewhat accurate guide to the 2.4 Linux Kernel and beyond.

In Linux 2.4, an infrastructure for mangling packets was introduced, called `net�lter'. A layer on top of this

provides NAT, completely reimplemented from previous kernels.

(C) 2000 Paul `Rusty' Russell. Licenced under the GNU GPL.

2 Where is the o�cial Web Site and List?

There are three o�cial sites:

� Thanks to Filewatcher <http://netfilter.filewatcher.org>.

� Thanks to The Samba Team and SGI <http://www.samba.org/netfilter>.

� Thanks to Jim Pick <http://netfilter.kernelnotes.org>.

For the o�cial net�lter mailing list, see Samba's Listserver <http://lists.samba.org>.

2.1 What is Network Address Translation?

Normally, packets on a network travel from their source (such as your home computer) to their destination

(such as www.kernelnotes.org) through many di�erent links: about 19 from where I am in Australia. None

of these links really alter your packet: they just send it onwards.

If one of these links were to do NAT, then they would alter the source or destinations of the packet as it

passes through. As you can imagine, this is not how the system was designed to work, and hence NAT

is always something of a crock. Usually the link doing NAT will remember how it mangled a packet, and

when a reply packet passes through the other way, it will do the reverse mangling on that reply packet, so

everything works.

2.2 Why Would I Want To Do NAT?

In a perfect world, you wouldn't. Meanwhile, the main reasons are:

Modem Connections To The Internet

Most ISPs give you a single IP address when you dial up to them. You can send out packets with any

source address you want, but only replies to packets with this source IP address will return to you.

3. The Two Types of NAT 3

If you want to use multiple di�erent machines (such as a home network) to connect to the Internet

through this one link, you'll need NAT.

This is by far the most common use of NAT today, commonly known as `masquerading' in the Linux

world. I call this SNAT, because you change the source address of the �rst packet.

Multiple Servers

Sometimes you want to change where packets heading into your network will go. Frequently this is

because (as above), you have only one IP address, but you want people to be able to get into the boxes

behind the one with the `real' IP address. If you rewrite the destination of incoming packets, you can

manage this.

A common variation of this is load-sharing, where the mapping ranges over a set of machines, fanning

packets out to them. This type of NAT was called port-forwarding under previous versions of Linux.

Transparent Proxying

Sometimes you want to pretend that each packet which passes through your Linux box is destined for

a program on the Linux box itself. This is used to make transparent proxies: a proxy is a program

which stands between your network and the outside world, shu�ing communication between the two.

The transparent part is because your network won't even know it's talking to a proxy, unless of course,

the proxy doesn't work.

Squid can be con�gured to work this way, and it is called redirection or transparent proxying under

previous Linux versions.

3 The Two Types of NAT

I divide NAT into two di�erent types: Source NAT (SNAT) and Destination NAT (DNAT).

Source NAT is when you alter the source address of the �rst packet: ie. you are changing where the

connection is coming from. Source NAT is always done post-routing, just before the packet goes out onto

the wire. Masquerading is a specialized form of SNAT.

Destination NAT is when you alter the destination address of the �rst packet: ie. you are changing where

the connection is going to. Destination NAT is always done pre-routing, when the packet �rst comes o� the

wire. Port forwarding, load sharing, and transparent proxying are all forms of DNAT.

4 Quick Translation From 2.0 and 2.2 Kernels

Sorry to those of you still shell-shocked from the 2.0 (ipfwadm) to 2.2 (ipchains) transition. There's good

and bad news.

Firstly, you can simply use ipchains and ipfwadm as before. To do this, you need to insmod the `ipchains.o'

or `ipfwadm.o' kernel modules found in the latest net�lter distribution. These are mutually exclusive (you

have been warned), and should not be combined with any other net�lter modules.

Once one of these modules is installed, you can use ipchains and ipfwadm as normal, with the following

di�erences:

� Setting the masquerading timeouts with ipchains -M -S, or ipfwadm -M -s does nothing. Since the

timeouts are longer for the new NAT infrastructure, this should not matter.

� The init_seq, delta and previous_delta �elds in the verbose masquerade listing are always zero.

4. Quick Translation From 2.0 and 2.2 Kernels 4

� Zeroing and listing the counters at the same time `-Z -L' does not work any more: the counters will

not be zeroed.

Hackers may also notice:

� You can now bind to ports 61000-65095 even if you're masquerading. The masquerading code used to

assume anything in this range was fair game, so programs couldn't use it.

� The (undocumented) `getsockname' hack, which transparent proxy programs could use to �nd out the

real destinations of connections no longer works.

� The (undocumented) bind-to-foreign-address hack is also not implemented; this was used to complete

the illusion of transparent proxying.

4.1 I just want masquerading! Help!

This is what most people want. If you have a dynamically allocated IP PPP dialup (if you don't know, you

do have one), you simply want to tell your box that all packets coming from your internal network should

be made to look like they are coming from the PPP dialup box.

Load the NAT module (this pulls in all the others).

modprobe iptable_nat

In the NAT table (-t nat), Append a rule (-A) after routing

(POSTROUTING) for all packets going out ppp0 (-o ppp0) which says to

MASQUERADE the connection (-j MASQUERADE).

iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

Turn on IP forwarding

echo 1 > /proc/sys/net/ipv4/ip_forward

Note that you are not doing any packet �ltering here: for that, see the Packet Filtering HOWTO: `Mixing

NAT and Packet Filtering'.

4.2 What about ipmasqadm?

This is a much more niche userbase, so I didn't worry about backwards compatibility as much. You can

simply use `iptables -t nat' to do port forwarding. So for example, in Linux 2.2 you might have done:

Linux 2.2

Forward TCP packets going to port 8080 on 1.2.3.4 to 192.168.1.1's port 80

ipmasqadm portfw -a -P tcp -L 1.2.3.4 8080 -R 192.168.1.1 80

Now you would do:

Linux 2.4

Append a rule pre-routing (-A PREROUTING) to the NAT table (-t nat) that

TCP packets (-p tcp) going to 1.2.3.4 (-d 1.2.3.4) port 8080 (--dport 8080)

have their destination mapped (-j DNAT) to 192.168.1.1, port 80

(--to 192.168.1.1:80).

iptables -A PREROUTING -t nat -p tcp -d 1.2.3.4 --dport 8080 \

-j DNAT --to 192.168.1.1:80

5. Controlling What To NAT 5

If you want this rule to alter local connections as well (i.e., even on the NAT box itself, trying to telnet to

1.2.3.4's port 8080 will get you to 192.168.1.1's port 80), you can insert the same rule in the OUTPUT chain

(which is for local outgoing packets):

Linux 2.4

iptables -A OUTPUT -t nat -p tcp -d 1.2.3.4 --dport 8080 \

-j DNAT --to 192.168.1.1:80

5 Controlling What To NAT

You need to create NAT rules which tell the kernel what connections to change, and how to change them.

To do this, we use the very versatile iptables tool, and tell it to alter the NAT table by specifying the `-t

nat' option.

The table of NAT rules contains three lists called `chains': each rule is examined in order until one matches.

The three chains are called PREROUTING (for Destination NAT, as packets �rst come in), POSTROUTING

(for Source NAT, as packets leave), and OUTPUT (for Destination NAT of locally-generated packets).

The following diagram would illustrate it quite well if I had any artistic talent:

_____ _____

/ \ / \

PREROUTING -->[Routing]----------------->POSTROUTING----->

\D-NAT/ [Decision] \S-NAT/

| ^

| __|__

| / \

| | OUTPUT|

| \D-NAT/

| ^

| |

--------> Local Process ------

At each of the points above, when a packet passes we look up what connection it is associated with. If it's a

new connection, we look up the corresponding chain in the NAT table to see what to do with it. The answer

it gives will apply to all future packets on that connection.

5.1 Simple Selection using iptables

iptables takes a number of standard options as listed below. All the double-dash options can be abbreviated,

as long as iptables can still tell them apart from the other possible options. If your kernel has iptables

support as a module, you'll need to load the ip_tables.o module �rst: `insmod ip_tables'.

The most important option here is the table selection option, `-t'. For all NAT operations, you will want to

use `-t nat' for the NAT table. The second most important option to use is `-A' to append a new rule at the

end of the chain (eg. `-A POSTROUTING'), or `-I' to insert one at the beginning (eg. `-I PREROUTING').

You can specify the source (`-s' or `�source') and destination (`-d' or `�destination') of the packets you

want to NAT. These options can be followed by a single IP address (eg. 192.168.1.1), a name (eg.

www.kernelnotes.org), or a network address (eg. 192.168.1.0/24 or 192.168.1.0/255.255.255.0).

You can specify the incoming (`-i' or `�in-interface') or outgoing (`-o' or `�out-interface') interface to match,

but which you can specify depends on which chain you are putting the rule into: at PREROUTING you

6. Saying How To Mangle The Packets 6

can only select incoming interface, and at POSTROUTING (and OUTPUT) you can only select outgoing

interface. If you use the wrong one, iptables will give an error.

5.2 Finer Points Of Selecting What Packets To Mangle

I said above that you can specify a source and destination address. If you omit the source address option,

then any source address will do. If you omit the destination address option, then any destination address

will do.

You can also indicate a speci�c protocol (`-p' or `�protocol'), such as TCP or UDP; only packets of this

protocol will match the rule. The main reason for doing this is that specifying a protocol of tcp or udp then

allows extra options: speci�cally the `�source-port' and `�destination-port' options (abbreviated as `�sport'

and `�dport').

These options allow you to specify that only packets with a certain source and destination port will match

the rule. This is useful for redirecting web requests (TCP port 80 or 8080) and leaving other packets alone.

These options must follow the `-p' option (which has a side-e�ect of loading the shared library extension for

that protocol). You can use port numbers, or a name from the /etc/services �le.

All the di�erent qualities you can select a packet by are detailed in painful detail in the manual page (man

iptables).

6 Saying How To Mangle The Packets

So now we know how to select the packets we want to mangle. To complete our rule, we need to tell the

kernel exactly what we want it to do to the packets.

6.1 Source NAT

You want to do Source NAT; change the source address of connections to something di�erent. This is done

in the POSTROUTING chain, just before it is �nally sent out; this is an important detail, since it means

that anything else on the Linux box itself (routing, packet �ltering) will see the packet unchanged. It also

means that the `-o' (outgoing interface) option can be used.

Source NAT is speci�ed using `-j SNAT', and the `�to-source' option speci�es an IP address, a range of IP

addresses, and an optional port or range of ports (for UDP and TCP protocols only).

Change source addresses to 1.2.3.4.

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to 1.2.3.4

Change source addresses to 1.2.3.4, 1.2.3.5 or 1.2.3.6

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to 1.2.3.4-1.2.3.6

Change source addresses to 1.2.3.4, ports 1-1023

iptables -t nat -A POSTROUTING -p tcp -o eth0 -j SNAT --to 1.2.3.4:1-1023

6.1.1 Masquerading

There is a specialized case of Source NAT called masquerading: it should only be used for dynamically-

assigned IP addresses, such as standard dialups (for static IP addresses, use SNAT above).

6. Saying How To Mangle The Packets 7

You don't need to put in the source address explicitly with masquerading: it will use the source address of

the interface the packet is going out from. But more importantly, if the link goes down, the connections

(which are now lost anyway) are forgotten, meaning fewer glitches when connection comes back up with a

new IP address.

Masquerade everything out ppp0.

iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

6.2 Destination NAT

This is done in the PREROUTING chain, just as the packet comes in; this means that anything else on the

Linux box itself (routing, packet �ltering) will see the packet going to its `real' destination. It also means

that the `-i' (incoming interface) option can be used.

To alter the destination of locally-generated packets, the OUTPUT chain can be used, but this is more

unusual (and changing them to go to destinations other than the local box itself does not work yet � April

2001).

Destination NAT is speci�ed using `-j DNAT', and the `�to-destination' option speci�es an IP address, a

range of IP addresses, and an optional port or range of ports (for UDP and TCP protocols only).

Change destination addresses to 5.6.7.8

iptables -t nat -A PREROUTING -i eth0 -j DNAT --to 5.6.7.8

Change destination addresses to 5.6.7.8, 5.6.7.9 or 5.6.7.10.

iptables -t nat -A PREROUTING -i eth0 -j DNAT --to 5.6.7.8-5.6.7.10

Change destination addresses of web traffic to 5.6.7.8, port 8080.

iptables -t nat -A PREROUTING -p tcp --dport 80 -i eth0 \

-j DNAT --to 5.6.7.8:8080

Redirect local packets to 1.2.3.4 to loopback.

iptables -t nat -A OUTPUT -d 1.2.3.4 -j DNAT --to 127.0.0.1

6.2.1 Redirection

There is a specialized case of Destination NAT called redirection: it is a simple convenience which is exactly

equivalent to doing DNAT to the address of the incoming interface.

Send incoming port-80 web traffic to our squid (transparent) proxy

iptables -t nat -A PREROUTING -i eth1 -p tcp --dport 80 \

-j REDIRECT --to-port 3128

Note that squid needs to be con�gured to know it's a transparent proxy!

6.3 Mappings In Depth

There are some subtleties to NAT which most people will never have to deal with. They are documented

here for the curious.

6. Saying How To Mangle The Packets 8

6.3.1 Selection Of Multiple Addresses in a Range

If a range of IP addresses is given, the IP address to use is chosen based on the least currently used IP for

connections the machine knows about. This gives primitive load-balancing.

6.3.2 Creating Null NAT Mappings

You can use the `-j ACCEPT' target to let a connection through without any NAT taking place.

6.3.3 Standard NAT Behaviour

The default behaviour is to alter the connection as little as possible, within the constraints of the rule given

by the user. This means we won't remap ports unless we have to.

6.3.4 Implicit Source Port Mapping

Even when no NAT is requested for a connection, source port translation it may occur implicitly, if another

connection has been mapped over the new one. Consider the case of masquerading, which it is rather

common:

1. A web connection is established by a box 192.1.1.1 from port 1024 to www.netscape.com port 80.

2. This is masqueraded by the masquerading box to use its source IP address (1.2.3.4).

3. The masquerading box tries to make a web connection to www.netscape.com port 80 from 1.2.3.4 (its

external interface address) port 1024.

4. The NAT code will alter the source port of the second connection to 1025, so that the two don't clash.

When this implicit source mapping occurs, ports are divided into three classes:

� Ports below 512

� Ports between 512 and 1023

� Ports 1024 and above.

A port will never be implicitly mapped into a di�erent class.

6.3.5 What Happens When NAT Fails

If there is no way to uniquely map a connection as the user requests, it will be dropped. This also applies

to packets which could not be classi�ed as part of any connection, because they are malformed, or the box

is out of memory, etc.

6.3.6 Multiple Mappings, Overlap and Clashes

You can have NAT rules which map packets onto the same range; the NAT code is clever enough to avoid

clashes. Hence having two rules which map the source address 192.168.1.1 and 192.168.1.2 respectively onto

1.2.3.4 is �ne.

7. Special Protocols 9

Furthermore, you can map over real, used IP addresses, as long as those addresses pass through the mapping

box as well. So if you have an assigned network (1.2.3.0/24), but have one internal network using those ad-

dresses and one using the Private Internet Addresses 192.168.1.0/24, you can simply NAT the 192.168.1.0/24

source addresses onto the 1.2.3.0 network, without fear of clashing:

iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth1 \

-j SNAT --to 1.2.3.0/24

The same logic applies to addresses used by the NAT box itself: this is how masquerading works (by sharing

the interface address between masqueraded packets and `real' packets coming from the box itself).

Moreover, you can map the same packets onto many di�erent targets, and they will be shared. For example,

if you don't want to map anything over 1.2.3.5, you could do:

iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth1 \

-j SNAT --to 1.2.3.0-1.2.3.4 --to 1.2.3.6-1.2.3.254

6.3.7 Altering the Destination of Locally-Generated Connections

If the destination of a locally-generated packet is changed (ie. by the OUTPUT chain), and that causes

the packet to pass out a di�erent interface, then the source address is also changed to that of the interface.

For example, changing the destination of a loopback packet to head out eth0 will result in the source also

being altered from 127.0.0.1 to the address of eth0; unlike other source mappings this is done immediately.

Naturally, both these mappings are reversed on the reply packets which come in.

7 Special Protocols

Some protocols do not like being NAT'ed. For each of these protocols, two extensions must be written; one

for the connection tracking of the protocol, and one for the actual NAT.

Inside the net�lter distribution, there are currently modules for ftp: ip_conntrack_ftp.o and ip_nat_ftp.o.

If you insmod these into your kernel (or you compile them in permanently), then doing any kind of NAT on

ftp connections should work. If you don't, then you can only use passive ftp, and even that might not work

reliably if you're doing more than simple Source NAT.

8 Caveats on NAT

If you are doing NAT on a connection, all packets passing both ways (in and out of the network) must

pass through the NAT'ed box, otherwise it won't work reliably. In particular, the connection tracking code

reassembles fragments, which means that not only will connection tracking not be reliable, but your packets

may not get through at all, as fragments will be withheld.

9 Source NAT and Routing

If you are doing SNAT, you will want to make sure that every machine the SNAT'ed packets goes to will send

replies back to the NAT box. For example, if you are mapping some outgoing packets onto the source address

1.2.3.4, then the outside router must know that it is to send reply packets (which will have destination

1.2.3.4) back to this box. This can be done in the following ways:

10. Destination NAT Onto the Same Network 10

1. If you are doing SNAT onto the box's own address (for which routing and everything already works),

you don't need to do anything.

2. If you are doing SNAT onto an unused address on the local LAN (for example, you're mapping onto

1.2.3.99, a free IP on your 1.2.3.0/24 network), your NAT box will need to respond to ARP requests

for that address as well as its own: the easiest way to do this is create an IP alias, eg:

ip address add 1.2.3.99 dev eth0

3. If you are doing SNAT onto a completely di�erent address, you will have to ensure that the machines

the SNAT packets will hit will route this address back to the NAT box. This is already achieved if the

NAT box is their default gateway, otherwise you will need to advertize a route (if running a routing

protocol) or manually add routes to each machine involved.

10 Destination NAT Onto the Same Network

If you are doing portforwarding back onto the same network, you need to make sure that both future packets

and reply packets pass through the NAT box (so they can be altered). The NAT code will now (since

2.4.0-test6), block the outgoing ICMP redirect which is produced when the NAT'ed packet heads out the

same interface it came in on, but the receiving server will still try to reply directly to the client (which won't

recognize the reply).

The classic case is that internal sta� try to access your `public' web server, which is actually DNAT'ed from

the public address (1.2.3.4) to an internal machine (192.168.1.1), like so:

iptables -t nat -A PREROUTING -d 1.2.3.4 \

-p tcp --dport 80 -j DNAT --to 192.168.1.1

One way is to run an internal DNS server which knows the real (internal) IP address of your public web site,

and forward all other requests to an external DNS server. This means that the logging on your web server

will show the internal IP addresses correctly.

The other way is to have the NAT box also map the source IP address to its own for these connections,

fooling the server into replying through it. In this example, we would do the following (assuming the internal

IP address of the NAT box is 192.168.1.250):

iptables -t nat -A POSTROUTING -d 192.168.1.1 -s 192.168.1.0/24 \

-p tcp --dport 80 -j SNAT --to 192.168.1.250

Because the PREROUTING rule gets run �rst, the packets will already be destined for the internal web

server: we can tell which ones are internally sourced by the source IP addresses.

11 Thanks

Thanks �rst to WatchGuard, and David Bonn, who believed in the net�lter idea enough to support me while

I worked on it.

And to everyone else who put up with my ranting as I learnt about the ugliness of NAT, especially those

who read my diary.

Rusty.

