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Chapter 1. Introduction
Welcome, to Rusty’s Remarkably Unreliable Guide to Kernel Locking issues. This
document describes the locking systems in the Linux Kernel as we approach 2.4.

It looks like SMP is here to stay; so everyone hacking on the kernel these days needs to
know the fundamentals of concurrency and locking for SMP.

1.1. The Problem With Concurrency
(Skip this if you know what a Race Condition is).

In a normal program, you can increment a counter like so:

very_important_count++;

This is what they would expect to happen:

Table 1-1. Expected Results

Instance 1 Instance 2

read very_important_count (5)

add 1 (6)

write very_important_count (6)

read very_important_count (6)

add 1 (7)

write very_important_count (7)

This is what might happen:

Table 1-2. Possible Results
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Chapter 1. Introduction

Instance 1 Instance 2

read very_important_count (5)

read very_important_count (5)

add 1 (6)

add 1 (6)

write very_important_count (6)

write very_important_count (6)

This overlap, where what actually happens depends on the relative timing of multiple
tasks, is called a race condition. The piece of code containing the concurrency issue is
called a critical region. And especially since Linux starting running on SMP machines,
they became one of the major issues in kernel design and implementation.

The solution is to recognize when these simultaneous accesses occur, and use locks to
make sure that only one instance can enter the critical region at any time. There are
many friendly primitives in the Linux kernel to help you do this. And then there are the
unfriendly primitives, but I’ll pretend they don’t exist.
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Chapter 2. Two Main Types of Kernel
Locks: Spinlocks and Semaphores

There are two main types of kernel locks. The fundamental type is the spinlock
(include/asm/spinlock.h), which is a very simple single-holder lock: if you can’t
get the spinlock, you keep trying (spinning) until you can. Spinlocks are very small and
fast, and can be used anywhere.

The second type is a semaphore (include/asm/semaphore.h): it can have more than
one holder at any time (the number decided at initialization time), although it is most
commonly used as a single-holder lock (a mutex). If you can’t get a semaphore, your
task will put itself on the queue, and be woken up when the semaphore is released. This
means the CPU will do something else while you are waiting, but there are many cases
when you simply can’t sleep (see Section 4.8), and so have to use a spinlock instead.

Neither type of lock is recursive: see Section 4.2.

2.1. Locks and Uniprocessor Kernels
For kernels compiled without CONFIG_SMP, spinlocks do not exist at all. This is an
excellent design decision: when no-one else can run at the same time, there is no reason
to have a lock at all.

You should always test your locking code with CONFIG_SMP enabled, even if you
don’t have an SMP test box, because it will still catch some (simple) kinds of deadlock.

Semaphores still exist, because they are required for synchronization between user
contexts, as we will see below.

2.2. Read/Write Lock Variants
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Chapter 2. Two Main Types of Kernel Locks: Spinlocks and Semaphores

Both spinlocks and semaphores have read/write variants: rwlock_t and struct
rw_semaphore. These divide users into two classes: the readers and the writers. If you
are only reading the data, you can get a read lock, but to write to the data you need the
write lock. Many people can hold a read lock, but a writer must be sole holder.

This means much smoother locking if your code divides up neatly along reader/writer
lines. All the discussions below also apply to read/write variants.

2.3. Locking Only In User Context
If you have a data structure which is only ever accessed from user context, then you can
use a simple semaphore (linux/asm/semaphore.h) to protect it. This is the most
trivial case: you initialize the semaphore to the number of resources available (usually
1), and call down_interruptible() to grab the semaphore, and up() to release it.
There is also a down(), which should be avoided, because it will not return if a signal
is received.

Example: linux/net/core/netfilter.c allows registration of new
setsockopt() and getsockopt() calls, with nf_register_sockopt().
Registration and de-registration are only done on module load and unload (and boot
time, where there is no concurrency), and the list of registrations is only consulted for
an unknown setsockopt() or getsockopt() system call. The
nf_sockopt_mutex is perfect to protect this, especially since the setsockopt and
getsockopt calls may well sleep.

2.4. Locking Between User Context and BHs
If a bottom half shares data with user context, you have two problems. Firstly, the
current user context can be interrupted by a bottom half, and secondly, the critical
region could be entered from another CPU. This is where spin_lock_bh()
(include/linux/spinlock.h) is used. It disables bottom halves on that CPU, then
grabs the lock. spin_unlock_bh() does the reverse.
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Chapter 2. Two Main Types of Kernel Locks: Spinlocks and Semaphores

This works perfectly for UP as well: the spin lock vanishes, and this macro simply
becomes local_bh_disable() (include/asm/softirq.h), which protects you
from the bottom half being run.

2.5. Locking Between User Context and
Tasklets/Soft IRQs

This is exactly the same as above, because local_bh_disable() actually disables all
softirqs and tasklets on that CPU as well. It should really be called
‘local_softirq_disable()’, but the name has been preserved for historical reasons.
Similarly, spin_lock_bh() would now be called spin_lock_softirq() in a perfect
world.

2.6. Locking Between Bottom Halves
Sometimes a bottom half might want to share data with another bottom half (especially
remember that timers are run off a bottom half).

2.6.1. The Same BH
Since a bottom half is never run on two CPUs at once, you don’t need to worry about
your bottom half being run twice at once, even on SMP.

2.6.2. Different BHs
Since only one bottom half ever runs at a time once, you don’t need to worry about race
conditions with other bottom halves. Beware that things might change under you,
however, if someone changes your bottom half to a tasklet. If you want to make your
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code future-proof, pretend you’re already running from a tasklet (see below), and doing
the extra locking. Of course, if it’s five years before that happens, you’re gonna look
like a damn fool.

2.7. Locking Between Tasklets
Sometimes a tasklet might want to share data with another tasklet, or a bottom half.

2.7.1. The Same Tasklet
Since a tasklet is never run on two CPUs at once, you don’t need to worry about your
tasklet being reentrant (running twice at once), even on SMP.

2.7.2. Different Tasklets
If another tasklet (or bottom half, such as a timer) wants to share data with your tasklet,
you will both need to use spin_lock() and spin_unlock() calls.
spin_lock_bh() is unnecessary here, as you are already in a tasklet, and none will be
run on the same CPU.

2.8. Locking Between Softirqs
Often a softirq might want to share data with itself, a tasklet, or a bottom half.

2.8.1. The Same Softirq
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The same softirq can run on the other CPUs: you can use a per-CPU array (see Section
4.3) for better performance. If you’re going so far as to use a softirq, you probably care
about scalable performance enough to justify the extra complexity.

You’ll need to use spin_lock() and spin_unlock() for shared data.

2.8.2. Different Softirqs
You’ll need to use spin_lock() and spin_unlock() for shared data, whether it be a
timer (which can be running on a different CPU), bottom half, tasklet or the same or
another softirq.
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Chapter 3. Hard IRQ Context
Hardware interrupts usually communicate with a bottom half, tasklet or softirq.
Frequently this involves putting work in a queue, which the BH/softirq will take out.

3.1. Locking Between Hard IRQ and
Softirqs/Tasklets/BHs

If a hardware irq handler shares data with a softirq, you have two concerns. Firstly, the
softirq processing can be interrupted by a hardware interrupt, and secondly, the critical
region could be entered by a hardware interrupt on another CPU. This is where
spin_lock_irq() is used. It is defined to disable interrupts on that cpu, then grab the
lock. spin_unlock_irq() does the reverse.

This works perfectly for UP as well: the spin lock vanishes, and this macro simply
becomes local_irq_disable() (include/asm/smp.h), which protects you from
the softirq/tasklet/BH being run.

spin_lock_irqsave() (include/linux/spinlock.h) is a variant which saves
whether interrupts were on or off in a flags word, which is passed to
spin_lock_irqrestore(). This means that the same code can be used inside an
hard irq handler (where interrupts are already off) and in softirqs (where the irq
disabling is required).
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Chapter 4. Common Techniques
This section lists some common dilemmas and the standard solutions used in the Linux
kernel code. If you use these, people will find your code simpler to understand.

If I could give you one piece of advice: never sleep with anyone crazier than yourself.
But if I had to give you advice on locking: keep it simple.

Lock data, not code.

Be reluctant to introduce new locks.

Strangely enough, this is the exact reverse of my advice when you have slept with
someone crazier than yourself.

4.1. No Writers in Interrupt Context
There is a fairly common case where an interrupt handler needs access to a critical
region, but does not need write access. In this case, you do not need to use
read_lock_irq(), but only read_lock() everywhere (since if an interrupt occurs,
the irq handler will only try to grab a read lock, which won’t deadlock). You will still
need to use write_lock_irq().

Similar logic applies to locking between softirqs/tasklets/BHs which never need a write
lock, and user context: read_lock() and write_lock_bh().

4.2. Deadlock: Simple and Advanced
There is a coding bug where a piece of code tries to grab a spinlock twice: it will spin
forever, waiting for the lock to be released (spinlocks, rwlocks and semaphores are not
recursive in Linux). This is trivial to diagnose: not a
stay-up-five-nights-talk-to-fluffy-code-bunnies kind of problem.
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For a slightly more complex case, imagine you have a region shared by a bottom half
and user context. If you use a spin_lock() call to protect it, it is possible that the user
context will be interrupted by the bottom half while it holds the lock, and the bottom
half will then spin forever trying to get the same lock.

Both of these are called deadlock, and as shown above, it can occur even with a single
CPU (although not on UP compiles, since spinlocks vanish on kernel compiles with
CONFIG_SMP=n. You’ll still get data corruption in the second example).

This complete lockup is easy to diagnose: on SMP boxes the watchdog timer or
compiling with DEBUG_SPINLOCKS set (include/linux/spinlock.h) will
show this up immediately when it happens.

A more complex problem is the so-called ‘deadly embrace’, involving two or more
locks. Say you have a hash table: each entry in the table is a spinlock, and a chain of
hashed objects. Inside a softirq handler, you sometimes want to alter an object from one
place in the hash to another: you grab the spinlock of the old hash chain and the
spinlock of the new hash chain, and delete the object from the old one, and insert it in
the new one.

There are two problems here. First, if your code ever tries to move the object to the
same chain, it will deadlock with itself as it tries to lock it twice. Secondly, if the same
softirq on another CPU is trying to move another object in the reverse direction, the
following could happen:

Table 4-1. Consequences

CPU 1 CPU 2

Grab lock A -> OK Grab lock B -> OK

Grab lock B -> spin Grab lock A -> spin

The two CPUs will spin forever, waiting for the other to give up their lock. It will look,
smell, and feel like a crash.
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4.2.1. Preventing Deadlock
Textbooks will tell you that if you always lock in the same order, you will never get this
kind of deadlock. Practice will tell you that this approach doesn’t scale: when I create a
new lock, I don’t understand enough of the kernel to figure out where in the 5000 lock
hierarchy it will fit.

The best locks are encapsulated: they never get exposed in headers, and are never held
around calls to non-trivial functions outside the same file. You can read through this
code and see that it will never deadlock, because it never tries to grab another lock
while it has that one. People using your code don’t even need to know you are using a
lock.

A classic problem here is when you provide callbacks or hooks: if you call these with
the lock held, you risk simple deadlock, or a deadly embrace (who knows what the
callback will do?). Remember, the other programmers are out to get you, so don’t do
this.

4.2.2. Overzealous Prevention Of Deadlocks
Deadlocks are problematic, but not as bad as data corruption. Code which grabs a read
lock, searches a list, fails to find what it wants, drops the read lock, grabs a write lock
and inserts the object has a race condition.

If you don’t see why, please stay the fuck away from my code.

4.3. Per-CPU Data
A great technique for avoiding locking which is used fairly widely is to duplicate
information for each CPU. For example, if you wanted to keep a count of a common
condition, you could use a spin lock and a single counter. Nice and simple.

16



Chapter 4. Common Techniques

If that was too slow [it’s probably not], you could instead use a counter for each CPU
[don’t], then none of them need an exclusive lock [you’re wasting your time here]. To
make sure the CPUs don’t have to synchronize caches all the time, align the counters to
cache boundaries by appending ‘__cacheline_aligned’ to the declaration
(include/linux/cache.h). [Can’t you think of anything better to do?]

They will need a read lock to access their own counters, however. That way you can use
a write lock to grant exclusive access to all of them at once, to tally them up.

4.4. Big Reader Locks
A classic example of per-CPU information is Ingo’s ‘big reader’ locks
(linux/include/brlock.h). These use the Per-CPU Data techniques described
above to create a lock which is very fast to get a read lock, but agonizingly slow for a
write lock.

Fortunately, there are a limited number of these locks available: you have to go through
a strict interview process to get one.

4.5. Avoiding Locks: Read And Write Ordering
Sometimes it is possible to avoid locking. Consider the following case from the 2.2
firewall code, which inserted an element into a single linked list in user context:

new->next = i->next;
i->next = new;

Here the author (Alan Cox, who knows what he’s doing) assumes that the pointer
assignments are atomic. This is important, because networking packets would traverse
this list on bottom halves without a lock. Depending on their exact timing, they would
either see the new element in the list with a valid next pointer, or it would not be in
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the list yet. A lock is still required against other CPUs inserting or deleting from the
list, of course.

Of course, the writes must be in this order, otherwise the new element appears in the
list with an invalid next pointer, and any other CPU iterating at the wrong time will
jump through it into garbage. Because modern CPUs reorder, Alan’s code actually read
as follows:

new->next = i->next;
wmb();
i->next = new;

The wmb() is a write memory barrier (include/asm/system.h): neither the
compiler nor the CPU will allow any writes to memory after the wmb() to be visible to
other hardware before any of the writes before the wmb().

As i386 does not do write reordering, this bug would never show up on that platform.
On other SMP platforms, however, it will.

There is also rmb() for read ordering: to ensure any previous variable reads occur
before following reads. The simple mb() macro combines both rmb() and wmb().

Any atomic operation is defined to act as a memory barrier (ie. as per the mb() macro).
Also, spinlock operations act as partial barriers: operations after gaining a spinlock will
never be moved to precede the spin_lock() call, and operations before releasing a
spinlock will never be moved after the spin_unlock() call.

4.6. Avoiding Locks: Atomic Operations
There are a number of atomic operations defined in include/asm/atomic.h: these
are guaranteed to be seen atomically from all CPUs in the system, thus avoiding races.
If your shared data consists of a single counter, say, these operations might be simpler
than using spinlocks (although for anything non-trivial using spinlocks is clearer).
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Note that the atomic operations are defined to act as both read and write barriers on all
platforms.

4.7. Protecting A Collection of Objects:
Reference Counts

Locking a collection of objects is fairly easy: you get a single spinlock, and you make
sure you grab it before searching, adding or deleting an object.

The purpose of this lock is not to protect the individual objects: you might have a
separate lock inside each one for that. It is to protect the data structure containing the
objects from race conditions. Often the same lock is used to protect the contents of all
the objects as well, for simplicity, but they are inherently orthogonal (and many other
big words designed to confuse).

Changing this to a read-write lock will often help markedly if reads are far more
common that writes. If not, there is another approach you can use to reduce the time the
lock is held: reference counts.

In this approach, an object has an owner, who sets the reference count to one.
Whenever you get a pointer to the object, you increment the reference count (a ‘get’
operation). Whenever you relinquish a pointer, you decrement the reference count (a
‘put’ operation). When the owner wants to destroy it, they mark it dead, and do a put.

Whoever drops the reference count to zero (usually implemented with
atomic_dec_and_test()) actually cleans up and frees the object.

This means that you are guaranteed that the object won’t vanish underneath you, even
though you no longer have a lock for the collection.

Here’s some skeleton code:

void create_foo(struct foo *x)
{

atomic_set(&x->use, 1);
spin_lock_bh(&list_lock);
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... insert in list ...
spin_unlock_bh(&list_lock);

}

struct foo *get_foo(int desc)
{

struct foo *ret;

spin_lock_bh(&list_lock);
... find in list ...
if (ret) atomic_inc(&ret->use);
spin_unlock_bh(&list_lock);

return ret;
}

void put_foo(struct foo *x)
{

if (atomic_dec_and_test(&x->use))
kfree(foo);

}

void destroy_foo(struct foo *x)
{

spin_lock_bh(&list_lock);
... remove from list ...
spin_unlock_bh(&list_lock);

put_foo(x);
}

4.7.1. Macros To Help You
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There are a set of debugging macros tucked inside
include/linux/netfilter_ipv4/lockhelp.h and listhelp.h: these are very
useful for ensuring that locks are held in the right places to protect infrastructure.

4.8. Things Which Sleep
You can never call the following routines while holding a spinlock, as they may sleep.
This also means you need to be in user context.

• Accesses to userspace:

• copy_from_user()

• copy_to_user()

• get_user()

• put_user()

• kmalloc(GFP_KERNEL)

• down_interruptible() and down()

There is a down_trylock() which can be used inside interrupt context, as it will
not sleep. up() will also never sleep.

printk() can be called in any context, interestingly enough.

4.9. The Fucked Up Sparc
Alan Cox says “the irq disable/enable is in the register window on a sparc”. Andi Kleen
says “when you do restore_flags in a different function you mess up all the register
windows”.
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So never pass the flags word set by spin_lock_irqsave() and brethren to another
function (unless it’s declared inline. Usually no-one does this, but now you’ve been
warned. Dave Miller can never do anything in a straightforward manner (I can say that,
because I have pictures of him and a certain PowerPC maintainer in a compromising
position).

4.10. Racing Timers: A Kernel Pastime
Timers can produce their own special problems with races. Consider a collection of
objects (list, hash, etc) where each object has a timer which is due to destroy it.

If you want to destroy the entire collection (say on module removal), you might do the
following:

/* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
HUNGARIAN NOTATION */

spin_lock_bh(&list_lock);

while (list) {
struct foo *next = list->next;
del_timer(&list->timer);
kfree(list);
list = next;

}

spin_unlock_bh(&list_lock);

Sooner or later, this will crash on SMP, because a timer can have just gone off before
the spin_lock_bh(), and it will only get the lock after we spin_unlock_bh(), and
then try to free the element (which has already been freed!).

This can be avoided by checking the result of del_timer(): if it returns 1, the timer
has been deleted. If 0, it means (in this case) that it is currently running, so we can do:
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retry:
spin_lock_bh(&list_lock);

while (list) {
struct foo *next = list->next;
if (!del_timer(&list->timer)) {

/* Give timer a chance to delete this */
spin_unlock_bh(&list_lock);
goto retry;

}
kfree(list);
list = next;

}

spin_unlock_bh(&list_lock);

Another common problem is deleting timers which restart themselves (by calling
add_timer() at the end of their timer function). Because this is a fairly common case
which is prone to races, you can put a call to timer_exit() at the very end of your
timer function, and user del_timer_sync() (include/linux/timer.h) to handle
this case. It returns the number of times the timer had to be deleted before we finally
stopped it from adding itself back in.
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Chapter 5. Further reading

• Documentation/spinlocks.txt: Linus Torvalds’ spinlocking tutorial in the
kernel sources.

• Unix Systems for Modern Architectures: Symmetric Multiprocessing and Caching
for Kernel Programmers:

Curt Schimmel’s very good introduction to kernel level locking (not written for
Linux, but nearly everything applies). The book is expensive, but really worth every
penny to understand SMP locking. [ISBN: 0201633388]
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Glossary
bh

Bottom Half: for historical reasons, functions with ‘_bh’ in them often now refer
to any software interrupt, e.g. spin_lock_bh() blocks any software interrupt on
the current CPU. Bottom halves are deprecated, and will eventually be replaced by
tasklets. Only one bottom half will be running at any time.

Hardware Interrupt / Hardware IRQ

Hardware interrupt request. in_irq() returns true in a hardware interrupt handler
(it also returns true when interrupts are blocked).

Interrupt Context

Not user context: processing a hardware irq or software irq. Indicated by the
in_interrupt() macro returning true (although it also returns true when
interrupts or BHs are blocked).

SMP

Symmetric Multi-Processor: kernels compiled for multiple-CPU machines.
(CONFIG_SMP=y).

softirq

Strictly speaking, one of up to 32 enumerated software interrupts which can run
on multiple CPUs at once. Sometimes used to refer to tasklets and bottom halves
as well (ie. all software interrupts).

Software Interrupt / Software IRQ
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Glossary

Software interrupt handler. in_irq() returns false; in_softirq() returns true.
Tasklets, softirqs and bottom halves all fall into the category of ‘software
interrupts’.

tasklet

A dynamically-registrable software interrupt, which is guaranteed to only run on
one CPU at a time.

UP

Uni-Processor: Non-SMP. (CONFIG_SMP=n).

User Context

The kernel executing on behalf of a particular process or kernel thread (given by
the current() macro.) Not to be confused with userspace. Can be interrupted by
software or hardware interrupts.

Userspace

A process executing its own code outside the kernel.
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