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Chapter 1. Introduction

Welcome, to Rusty’s Remarkably Unreliable Guide to Kernel Locking issues. This
document describes the locking systemsin the Linux Kernel as we approach 2.4.

It looks like SMIP is here to stay; so everyone hacking on the kernel these days needs to
know the fundamentals of concurrency and locking for SMP.

1.1. The Problem With Concurrency

(Skip thisif you know what a Race Condition is).

In anormal program, you can increment a counter like so:

very important count++;

Thisiswhat they would expect to happen:

Table 1-1. Expected Results

Instance 1 Instance 2

read very_important_count (5)

add 1 (6)

write very _important_count (6)

read very_important_count (6)

add 1 (7)

write very_important_count (7)

Thisiswhat might happen:

Table 1-2. Possible Results
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Instance 1

Instance 2

read very_important_count (5)

read very_important_count (5)

add 1 (6)

add 1 (6)

write very_important_count (6)

write very_important_count (6)

This overlap, where what actually happens depends on the relative timing of multiple
tasks, is called arace condition. The piece of code containing the concurrency issueis
called acritical region. And especially since Linux starting running on SMP machines,
they became one of the major issuesin kernel design and implementation.

The solution is to recognize when these simultaneous accesses occur, and use locks to
make sure that only one instance can enter the critical region at any time. There are
many friendly primitivesin the Linux kernel to help you do this. And then there are the
unfriendly primitives, but I’ll pretend they don’t exist.




Chapter 2. Two Main Types of Kernel
Locks: Spinlocks and Semaphores

There are two main types of kernel locks. The fundamental type is the spinlock
(include/asm/spinlock.h), whichisavery simple single-holder lock: if you can’t
get the spinlock, you keep trying (spinning) until you can. Spinlocks are very small and
fast, and can be used anywhere.

The second typeis asemaphore (include/asm/semaphore . h): it can have more than
one holder at any time (the number decided at initialization time), although it is most
commonly used as a single-holder lock (a mutex). If you can’t get a semaphore, your
task will put itself on the queue, and be woken up when the semaphore isreleased. This
means the CPU will do something else while you are waiting, but there are many cases
when you simply can’t sleep (see Section 4.8), and so have to use a spinlock instead.

Neither type of lock isrecursive: see Section 4.2.

2.1. Locks and Uniprocessor Kernels

For kernels compiled without CONFIG_SMP, spinlocks do not exist at all. Thisisan
excellent design decision: when no-one else can run at the same time, there is no reason
to have alock at all.

You should always test your locking code with CONFIG_SMP enabled, even if you
don’'t have an SMP test box, because it will still catch some (simple) kinds of deadlock.

Semaphores still exist, because they are required for synchronization between user
contexts, aswe will see below.

2.2. Read/Write Lock Variants
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Both spinlocks and semaphores have read/write variants: rwlock _t and struct
rw_semaphore. These divide usersinto two classes: the readers and the writers. If you
are only reading the data, you can get aread lock, but to write to the data you need the
write lock. Many people can hold aread lock, but awriter must be sole holder.

This means much smoother locking if your code divides up neatly along reader/writer
lines. All the discussions below also apply to read/write variants.

2.3. Locking Only In User Context

If you have a data structure which is only ever accessed from user context, then you can
use asimple semaphore (1inux/asm/semaphore . h) to protect it. Thisisthe most
trivial case: you initialize the semaphore to the number of resources available (usually
1), and call down interruptible () to grab the semaphore, and up () to release it.
Thereisaso adown (), which should be avoided, because it will not return if asigna
isreceived.

Example: 1inux/net/core/netfilter.c alowsregistration of new
setsockopt () and getsockopt () cals, withnf register sockopt ().
Registration and de-registration are only done on module load and unload (and boot
time, where there is no concurrency), and the list of registrationsis only consulted for
an unknown setsockopt () OfF getsockopt () Systemcall. The

nf sockopt mutex iSperfect to protect this, especially since the setsockopt and
getsockopt calls may well sleep.

2.4. Locking Between User Context and BHs

If abottom half shares data with user context, you have two problems. Firstly, the
current user context can be interrupted by a bottom half, and secondly, the critical
region could be entered from another CPU. Thisiswhere spin lock bh ()
(include/linux/spinlock.h)isused. It disables bottom halves on that CPU, then
grabsthelock. spin unlock bh () doesthereverse.
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Thisworks perfectly for UP aswell: the spin lock vanishes, and this macro simply
becomes1ocal bh disable() (include/asm/softirg.h), which protectsyou
from the bottom half being run.

2.5. Locking Between User Context and
Tasklets/Soft IRQs

Thisis exactly the same as above, because 1ocal bh disable () actually disablesall
softirgs and tasklets on that CPU as well. It should really be called
‘local_softirg_disable()’, but the name has been preserved for historical reasons.
Similarly, spin_lock bh () would now be called spin_lock_softirq() in a perfect
world.

2.6. Locking Between Bottom Halves

Sometimes a bottom half might want to share data with another bottom half (especially
remember that timers are run off a bottom half).

2.6.1. The Same BH

Since a bottom half is never run on two CPUs at once, you don’t need to worry about
your bottom half being run twice at once, even on SMP.

2.6.2. Different BHs

Since only one bottom half ever runs at atime once, you don’t need to worry about race
conditions with other bottom halves. Beware that things might change under you,
however, if someone changes your bottom half to atasklet. If you want to make your

10
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code future-proof, pretend you're aready running from atasklet (see below), and doing
the extralocking. Of coursg, if it’'sfive years before that happens, you're gonnalook
like adamn fool.

2.7. Locking Between Tasklets

Sometimes a tasklet might want to share data with another tasklet, or a bottom half.

2.7.1. The Same Tasklet

Since atasklet is never run on two CPUs at once, you don’'t need to worry about your
tasklet being reentrant (running twice at once), even on SMP.

2.7.2. Different Tasklets

If another tasklet (or bottom half, such as atimer) wants to share data with your tasklet,
you will both need to use spin_lock () and spin unlock () calls.

spin_lock_bh () isunnecessary here, asyou are already in atasklet, and none will be
run on the same CPU.

2.8. Locking Between Softirgs

Often a softirqg might want to share data with itself, atasklet, or a bottom half.

2.8.1. The Same Softirq

11
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2.8.2.

12

The same softirg can run on the other CPUs: you can use a per-CPU array (see Section
4.3) for better performance. If you're going so far as to use a softirg, you probably care
about scalable performance enough to justify the extra complexity.

You'll need to use spin lock () and spin unlock () for shared data.

Different Softirgs

You'll needto use spin lock () and spin unlock () for shared data, whether it be a
timer (which can be running on a different CPU), bottom half, tasklet or the same or
another softirq.



Chapter 3. Hard IRQ Context

Hardware interrupts usually communicate with a bottom half, tasklet or softirg.
Frequently thisinvolves putting work in a queue, which the BH/softirq will take out.

3.1. Locking Between Hard IRQ and
Softirgs/Tasklets/BHs

If ahardware irq handler shares data with a softirg, you have two concerns. Firstly, the
softirg processing can be interrupted by a hardware interrupt, and secondly, the critical
region could be entered by a hardware interrupt on another CPU. Thisiswhere
spin_lock irg() isused. It isdefined to disable interrupts on that cpu, then grab the
lock. spin unlock irg() doesthereverse.

Thisworks perfectly for UP as well: the spin lock vanishes, and this macro simply
becomesilocal irg disable () (include/asm/smp.h), which protectsyou from
the softirg/tasklet/BH being run.

spin lock irgsave () (include/linux/spinlock.h)isavariant which saves
whether interrupts were on or off in a flags word, which is passed to

spin lock irgrestore (). Thismeansthat the same code can be used inside an
hard irq handler (where interrupts are already off) and in softirgs (where theirq
disabling is required).

13
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This section lists some common dilemmas and the standard solutions used in the Linux
kernel code. If you use these, people will find your code simpler to understand.

If I could give you one piece of advice: never sleep with anyone crazier than yourself.
But if | had to give you advice on locking: keep it simple.

Lock data, not code.

Be reluctant to introduce new locks.

Strangely enough, thisisthe exact reverse of my advice when you have slept with
someone crazier than yourself.

4.1. No Writers in Interrupt Context

Thereisafairly common case where an interrupt handler needs access to acritical
region, but does not need write access. In this case, you do not need to use

read lock irqg(),butonly read lock () everywhere (sinceif aninterrupt occurs,
the irg handler will only try to grab aread lock, which won’t deadlock). You will still
needtousewrite lock irg().

Similar logic appliesto locking between softirqs/tasklets'BHs which never need awrite
lock, and user context: read lock () andwrite lock bh().

4.2. Deadlock: Simple and Advanced

There is a coding bug where a piece of code triesto grab a spinlock twice: it will spin
forever, waiting for the lock to be released (spinlocks, rwlocks and semaphores are not
recursive in Linux). Thisistrivial to diagnose: not a

stay-up-five-nights-tal k-to-fluffy-code-bunnies kind of problem.

14
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For adlightly more complex case, imagine you have aregion shared by a bottom half
and user context. If youuseaspin lock () call to protect it, it is possible that the user
context will be interrupted by the bottom half while it holds the lock, and the bottom
half will then spin forever trying to get the same lock.

Both of these are called deadlock, and as shown above, it can occur even with asingle
CPU (athough not on UP compiles, since spinlocks vanish on kernel compiles with
CONFIG_SMP=n. You'll still get data corruption in the second example).

This complete lockup is easy to diagnose: on SM P boxes the watchdog timer or
compiling with DEBUG_SPINLOCKS set (include/linux/spinlock.h) will
show this up immediately when it happens.

A more complex problem is the so-called ‘ deadly embrace’, involving two or more
locks. Say you have a hash table: each entry in the tableis a spinlock, and a chain of
hashed objects. Inside a softirq handler, you sometimes want to alter an object from one
place in the hash to another: you grab the spinlock of the old hash chain and the
spinlock of the new hash chain, and delete the object from the old one, and insert it in
the new one.

There are two problems here. First, if your code ever tries to move the object to the
same chain, it will deadlock with itself asit triesto lock it twice. Secondly, if the same
softirg on another CPU istrying to move another object in the reverse direction, the
following could happen:

Table 4-1. Consequences

CPU 1 CPU 2
Grab lock A -> OK Grab lock B -> OK
Grab lock B -> spin Grab lock A -> spin

The two CPUs will spin forever, waiting for the other to give up their lock. It will [ook,
smell, and feel like a crash.

15
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4.2.1.

4.2.2.

Preventing Deadlock

Textbooks will tell you that if you always lock in the same order, you will never get this
kind of deadlock. Practice will tell you that this approach doesn’'t scale: when | create a
new lock, | don’'t understand enough of the kernel to figure out where in the 5000 lock
hierarchy it will fit.

The best locks are encapsulated: they never get exposed in headers, and are never held
around callsto non-trivial functions outside the same file. You can read through this
code and see that it will never deadlock, because it never tries to grab another lock
while it has that one. People using your code don’t even need to know you are using a
lock.

A classic problem here is when you provide callbacks or hooks: if you call these with
the lock held, you risk simple deadlock, or a deadly embrace (who knows what the
callback will do?). Remember, the other programmers are out to get you, so don’t do
this.

Overzealous Prevention Of Deadlocks

Deadlocks are problematic, but not as bad as data corruption. Code which grabs a read
lock, searches alist, failsto find what it wants, drops the read lock, grabs a write lock
and inserts the object has a race condition.

If you don’t see why, please stay the fuck away from my code.

4.3. Per-CPU Data

16

A great technique for avoiding locking which is used fairly widely isto duplicate
information for each CPU. For example, if you wanted to keep a count of acommon
condition, you could use a spin lock and a single counter. Nice and simple.
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If that was too slow [it’s probably not], you could instead use a counter for each CPU
[don’t], then none of them need an exclusive lock [you're wasting your time here]. To
make sure the CPUs don’t have to synchronize caches all the time, align the countersto
cache boundaries by appending * __cacheline aligned’ to the declaration
(include/linux/cache.h).[Can’t you think of anything better to do?]

They will need aread lock to access their own counters, however. That way you can use
awrite lock to grant exclusive accessto all of them at once, to tally them up.

4.4. Big Reader Locks

A classic example of per-CPU informationisIngo’s ‘big reader’ locks
(1inux/include/brlock.h). These use the Per-CPU Data techniques described
aboveto create alock which is very fast to get aread lock, but agonizingly slow for a
write lock.

Fortunately, there are alimited number of these locks available: you have to go through
astrict interview process to get one.

4.5. Avoiding Locks: Read And Write Ordering

Sometimesit is possible to avoid locking. Consider the following case from the 2.2
firewall code, which inserted an element into asingle linked list in user context:

new->next = i->next;
i->next = new;

Here the author (Alan Cox, who knows what he's doing) assumes that the pointer
assignments are atomic. Thisisimportant, because networking packets would traverse
thislist on bottom halves without alock. Depending on their exact timing, they would
either see the new element in the list with avalid next pointer, or it would not bein

17
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the list yet. A lock is still required against other CPUs inserting or deleting from the
list, of course.

Of course, the writes must be in this order, otherwise the new element appearsin the
list with an invalid next pointer, and any other CPU iterating at the wrong time will
jump through it into garbage. Because modern CPUs reorder, Alan’s code actually read
asfollows:

new->next = 1->next;
wmb () ;
i->next = new;

Thewmb () isawrite memory barrier (include/asm/system.h): neither the
compiler nor the CPU will allow any writes to memory after the wmb () to be visible to
other hardware before any of the writes before the wmb () .

Asi386 does not do write reordering, this bug would never show up on that platform.
On other SMP platforms, however, it will.

Thereisalso rmb () for read ordering: to ensure any previous variable reads occur
before following reads. The simplemb () macro combines both rmb () and wmb () .

Any atomic operation is defined to act asamemory barrier (ie. as per themb () macro).
Also, spinlock operations act as partial barriers. operations after gaining a spinlock will
never be moved to precede the spin lock () cal, and operations before releasing a
spinlock will never be moved after the spin unlock () call.

4.6. Avoiding Locks: Atomic Operations

18

There are anumber of atomic operations defined in include/asm/atomic.h: these

are guaranteed to be seen atomically from all CPUs in the system, thus avoiding races.
If your shared data consists of a single counter, say, these operations might be simpler

than using spinlocks (although for anything non-trivial using spinlocksis clearer).
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Note that the atomic operations are defined to act as both read and write barriers on all
platforms.

4.7. Protecting A Collection of Objects:
Reference Counts

Locking a collection of objectsisfairly easy: you get asingle spinlock, and you make
sure you grab it before searching, adding or deleting an object.

The purpose of thislock is not to protect the individual objects: you might have a
separate lock inside each one for that. It isto protect the data structure containing the
objects from race conditions. Often the same lock is used to protect the contents of all
the objects as well, for simplicity, but they are inherently orthogonal (and many other
big words designed to confuse).

Changing thisto aread-write lock will often help markedly if reads are far more
common that writes. If not, there is another approach you can use to reduce the time the
lock is held: reference counts.

In this approach, an object has an owner, who sets the reference count to one.
Whenever you get a pointer to the object, you increment the reference count (a* get’
operation). Whenever you relinquish a pointer, you decrement the reference count (a
‘put’ operation). When the owner wants to destroy it, they mark it dead, and do a put.

Whoever drops the reference count to zero (usually implemented with
atomic_dec_and test ()) actually cleans up and frees the object.

This means that you are guaranteed that the object won't vanish underneath you, even
though you no longer have alock for the collection.

Here's some skeleton code;

void create foo(struct foo *x)

{

atomic_set (&x->use, 1);
spin lock bh(&list lock) ;

19
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insert in list
spin unlock bh(&list lock) ;

struct foo *get foo(int desc)

{

struct foo *ret;

spin lock bh(&list lock) ;

find in list
if (ret) atomic inc(&ret->use);
spin unlock bh(&list lock) ;

return ret;

void put foo(struct foo *x)

{

if (atomic_dec_and test (&x->use))
kfree (foo) ;

void destroy foo(struct foo *x)

{
spin lock bh(&list lock) ;
remove from list
spin unlock bh(&list lock) ;

put foo (%) ;

4.7.1. Macros To Help You

20
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There are a set of debugging macros tucked inside
include/linux/netfilter ipv4/lockhelp.hand listhelp.h:thesearevery
useful for ensuring that locks are held in the right places to protect infrastructure.

4.8. Things Which Sleep

You can never call the following routines while holding a spinlock, as they may sleep.
This aso means you need to be in user context.

+ Accesses to userspace:
copy from user()
copy to user()
get user()

put user()

*+ kmalloc (GFP_KERNEL)
+ down_interruptible () and down ()

Thereisadown trylock () which can be used inside interrupt context, asit will
not sleep. up () will also never sleep.

printk () can be called in any context, interestingly enough.

4.9. The Fucked Up Sparc

Alan Cox says “theirq disable/enableisin the register window on a sparc”. Andi Kleen
says “when you do restore flagsin a different function you mess up all the register
windows’.

21
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So never passthe flagsword set by spin lock irgsave () and brethren to another
function (unlessit’s declared inline. Usually no-one does this, but now you’ve been
warned. Dave Miller can never do anything in a straightforward manner (I can say that,
because | have pictures of him and a certain PowerPC maintainer in acompromising
position).

4.10. Racing Timers: A Kernel Pastime

Timers can produce their own special problems with races. Consider a collection of
objects (list, hash, etc) where each object has atimer which is due to destroy it.

If you want to destroy the entire collection (say on module removal), you might do the
following:

/* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
HUNGARIAN NOTATION */
spin lock bh(&list lock) ;

while (list) {
struct foo *next = list->next;
del timer (&list->timer) ;
kfree(list);
list = next;

}

spin unlock bh(&list lock) ;

Sooner or later, thiswill crash on SMP, because atimer can have just gone off before
the spin_lock bh(),and it will only get thelock after we spin unlock bh (), and
then try to free the element (which has already been freed!).

This can be avoided by checking the result of del timer (): if it returns 1, the timer
has been deleted. If O, it means (in this case) that it is currently running, so we can do:

22
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retry:
spin_ lock bh(&list_ lock) ;

while (list) {
struct foo *next = list-s>next;
if (!del timer(&list->timer)) ({
/* Give timer a chance to delete this */
spin unlock bh(&list lock) ;
goto retry;

}

kfree(list) ;
list = next;

}

spin unlock bh(&list lock) ;

Another common problem is deleting timers which restart themselves (by calling
add_timer () at theend of their timer function). Because thisis afairly common case
which isproneto races, you can put acal to timer exit () at the very end of your
timer function, and user del timer sync () (include/linux/timer.h)to handle
this case. It returns the number of timesthe timer had to be deleted before we finally
stopped it from adding itself back in.

23



Chapter 5. Further reading

Documentation/spinlocks.txt:LinusTorvalds spinlocking tutorial inthe
kernel sources.

Unix Systems for Modern Architectures. Symmetric Multiprocessing and Caching
for Kernel Programmers:

Curt Schimmel’s very good introduction to kernel level locking (not written for
Linux, but nearly everything applies). The book is expensive, but really worth every
penny to understand SMP locking. [ISBN: 0201633388]
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bh

Bottom Half: for historical reasons, functionswith *_bh’ in them often now refer
to any software interrupt, e.9. spin lock bh () blocksany software interrupt on
the current CPU. Bottom halves are deprecated, and will eventually be replaced by
tasklets. Only one bottom half will be running at any time.

Hardware Interrupt / Hardware IRQ

Hardware interrupt request. in_irg () returnstruein ahardware interrupt handler
(it also returns true when interrupts are blocked).

Interrupt Context

Not user context: processing a hardware irq or software irg. Indicated by the
in interrupt () macro returning true (although it also returns true when
interrupts or BHs are blocked).

SMP

Symmetric Multi-Processor: kernels compiled for multiple-CPU machines.
(CONFIG_SMP=y).

softirg

Strictly speaking, one of up to 32 enumerated software interrupts which can run
on multiple CPUs at once. Sometimes used to refer to tasklets and bottom halves
aswell (ie. all software interrupts).

Software Interrupt / Software IRQ

26
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Software interrupt handler. in_irqg () returnsfalse; in softirg() returnstrue.
Tasklets, softirgs and bottom halves all fall into the category of ‘ software
interrupts'.

tasklet

A dynamically-registrable software interrupt, which is guaranteed to only run on
one CPU at atime.

UP
Uni-Processor: Non-SMP. (CONFIG_SMP=n).
User Context

The kernel executing on behalf of a particular process or kernel thread (given by
the current () macro.) Not to be confused with userspace. Can be interrupted by
software or hardware interrupts.

Userspace

A process executing its own code outside the kernel.
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