
Intermediate Unix Training

pwalker@ncsa.uiuc.edu

TM

National Center for Supercomputing Applications
152 Computing Applications Building

605 E. Spring�eld
Champaign, IL 61820-5518

Contents

1 /bin/csh concepts and tricks 5

Using shell history 1: Recalling old commands : : : : : : : : : : : : : : : : : 5
Using shell history 2: Bits of old commands : : : : : : : : : : : : : : : : : : : 6
Using shell history 3: Changing old commands : : : : : : : : : : : : : : : : : 7
Background a job : 8
Managing jobs in the background : 8
Some advanced alias tricks : 9
Globbing : 10
Using foreach to access multiple �les : 10
BackTicks : 11
Grouping commands with () : 11

2 Pipes and Redirection 13
What is a stream : 13
What is a pipe : 13
What is a redirect : 13
How do I use a pipe : 13
How do I use a redirect (/bin/csh version) : 14

3 Pipe Building Blocks 15

cat, -, and the bit bucket (/dev/null) : 15
more or less : 16
head and tail : 16
wc : 17
grep: Grab a Regular Expression : 17
[n]awk: Manipulate Columns : 19
Other useful building blocks : 20
An example: Superpipe! : 20

4 vi tricks and tips 23
Emacs : 23
Marks and yanking/moving blocks of text : 23
Searching and Replacing : 24
Line numbers : 25
Using your .exrc (NOT your .virc) : 25

5 File Management 27
Compressing with compress and gzip : 27
Handling multiple �les with tar : 27
Locating �les with �nd : 28
tar, gzip, and ftp with pipes : 29
NFS File Permissions: chmod and umask : 31
AFS File Permissions I: acl's : 31
AFS File Permissions II: Groups : 32

6 Basic Scripting with the csh 35
Basic Ideas : 35
The Simplest Script of All! : 36
Grabbing Command Line Arguments : 36
Using Variables : 37
Conditionals with if : 38
Loops with foreach : 39
Writing to stdin with << : 39

7 Miscellanous Other Things 41
Starting up with your . �les : 41
Seeing whats running and stopping it with ps and kill : : : : : : : : : : : 42
See whos on with �nger and who : 42
See whats up with ping, rup, and uptime : 43
Seeing where it lives with which : 43
Seeing whats left and used with du, df, and fs lq : : : : : : : : : : : : : : : 44
Seeing whats changed with di� : 44
Things I don't have time to mention : 45

8 Concluding Comments 47

2 Intermediate Unix Training

Introduction

These documents contain the course materials for "Intermediate Unix", by
Paul Walker. The course was �rst given Oct 19, 1995, and then again April 3,
1996. If you have any questions or comments about these documents, please
contact Paul at pwalker@ncsa.uiuc.edu.

One comment is in order. Intermediate Unix is a very large and varied topic.
There are many di�erent classes that could have been taught with this title,
and those classes could have lasted between hours and days. I've chosen the
topics here because these are tools and commands I use every single day. I
have also skipped many items since I have a short (2.5 hour) time limit. An
omission of a topic does not mean it is useless; rather it inidicates it is too
complex, obscure, or infrequently used (in my opinion) to warrant inclusion in
a course of this scope.

These documents are available at:

http://www.ncsa.uiuc.edu/General/Training/InterUnix/

4 Intermediate Unix Training

Chapter 1

/bin/csh concepts and tricks

Most unix users use csh as their primary working environment. The csh gives
you the prompt and reads your commands. However, /bin/csh has many
powerful features including history, job control, aliasing, foreach statements,
and many other things. These are accessed either via the command line, your
~/.cshrc con�guration �le, or csh scripts (which we will cover later in this
course (p. 35)).

Some users use shells other than csh for their day-to-day use, the most common
being tcsh. We will not cover these other shells.

Using shell history 1: Recalling old commands

The csh has a history manager which remembers old commands. The number
of old commands it remembers is set with the history environment variable
which you probably want to set to a large number with a command like

set history = 200

in your ~/.cshrc �le. Each command is then given a number. You can see
your previous commands and their numbers with the command history #
where # is the number of commands you want to see. For example,

loki(pwalker).30 % history 5
26 idl
27 setenv DISPLAY hopper:0
28 idl
29 more ~/.exrc
30 history 5

You can recall previous commands with three basic mechanisms. The �rst is
to use !# where # is the number of the command of interest, eg

loki(pwalker).31 % !27
setenv DISPLAY hopper:0

Note the command is echoed out to the console after being recalled. This
behaviour is common.

The second method is to use !patternwhere pattern is a pattern to be matched
against a previous command. eg,

loki(pwalker).32 % !set
setenv DISPLAY hopper:0

or, here

loki(pwalker).33 % !s
setenv DISPLAY hopper:0

The third method is to use !-# where # is the number of commands to go
back, eg

loki(pwalker).41 % history 3
39 ls
40 setenv DISPLAY hopper:0
41 history 3

loki(pwalker).42 % !-3
ls

Finally, many people use !! to repeat their last command. I mention this
here, but it really belongs in the next section.

Using shell history 2: Bits of old commands

As well as recalling old commands, you can recall segments of your previous
command very easily with the csh. The syntax for this is !x where x is a
special character. The following are the useful values of x, and how they would
operate on the example string

a.out arg1 arg2 arg3

!! Entire previous line
a.out arg1 arg2
arg3

!* All the arguments arg1 arg2 arg3

!$ Last argument arg3

!:#
The #'th argument
(from 0)

!:2 The second argument arg2

An example of when these can be useful is, for example (with the output
supressed)

hopper(pwalker).48 % ls /afs/ncsa/common/doc/ftp
/afs/ncsa/common/doc/web

...
hopper(pwalker).49 % ls -l !*
ls -l /afs/ncsa/common/doc/ftp /afs/ncsa/common/doc/web

6 Intermediate Unix Training

...
hopper(pwalker).50 % ls !$/VR/
ls /afs/ncsa/common/doc/web/VR/

where I have added a line break in the �rst line to improve readability. Note
the contraction of !$/subdirectory which is always useful.

Using shell history 3: Changing old commands

Often, you will want to change a previous command a little. This is also fairly
straightforward in the csh, although many people prefer to cut and paste with
the mouse. Well, that's because they didn't have to work on a vt100 when they
were undergrads (or maybe because they did!). So, here is how you modify
your old commands.

To modify your previous command in one place use the ^old^new constuction,
which replaces the old with the new. For example,

hopper(pwalker).52 % mire imagemap.txt
mire - Command not found
hopper(pwalker).53 % ^ir^or
more imagemap.txt

To modify an old command, use the (somewhat non-intuitive) construct

[command reference]:[g]s:old:new

[command reference] is any reference to a previous command, eg !! or !35

[g]s means search (s) or global search (gs) and replace. Note the global is a
little misleading. global means apply the search once per word, which is a little
di�erent than most peoples perception of global

old:new means replace old with new.

So, for instance:

farside(pwalker).212 % foo input

farside(pwalker).213 % bar input

farside(pwalker).214 % !212:s:in:out
foo output

farside(pwalker).215 % !214:gs:o:a
fao auput

Notice the tricky behaviour of the global search on line 215.

/bin/csh concepts and tricks 7

Background a job

Putting a job in the background means that it will run but return the prompt
for you. This is possible due to Unix's multi-tasking abilities.

There are two methods to background a job. The �rst is to place it in the back-
ground when you start the job. This is accomplished by placing an ampersand
(&) at the end of the invocation. For instance,

a.out arg1 arg2 &

Then a.out will run but you will have your prompt back. Note the output from
a.out will still come to your console. We will discuss how to avoid this in the
pipes and redirection (p. 13) section of the course.

The other method is to suspend the job and then background it. To suspend
(stop) a job, use ^Z where I'm using ^ to mean control. This will stop the job.
Then place the job in the background with the command bg.

Managing jobs in the background

You can easily have several jobs backgrounded, and you often want to bring
one of them to the foreground, kill one, or otherwise manipulate them.

The jobs command will tell you which jobs you have running. For instance,

hopper(pwalker).77 % jobs
[1] + Running xdvi EH_V3.dvi
[2] - Running xemacs src/ReadData.c src/SfcEvolve.c

This display has several bits of information. The job number is in the []. The
+ indicated which job is the current default for fg and bg commands, the job
status is shown, and the job name.

You can bring a job to the foreground with fg %# where # is the number
indicated in the output of jobs, eg:

hopper(pwalker).78 % fg %2
xemacs src/ReadData.c src/SfcEvolve.c

You can then stop this job with ^Z and jobs will show it as stopped.

hopper(pwalker).80 % fg %2
xemacs src/ReadData.c src/SfcEvolve.c
<---- I pressed ^Z here, but it didn't show up!
Stopped
hopper(pwalker).81 % jobs
[1] - Running xdvi EH_V3.dvi
[2] + Stopped xemacs src/ReadData.c src/SfcEvolve.c

8 Intermediate Unix Training

Then to background this, use bg %2 or simply bg since the job is currently
selected (as inidcated by the +).

Finally, you can easily kill a job:

hopper(pwalker).83 % kill %1
[1] Terminated xdvi EH_V3.dvi

using the same syntax as the other commands.

Some advanced alias tricks
Most users know about the simple aliases easily available in the csh. For
instance,

alias rm rm -i

will alias the command rm to rm -i, eg, to prompt you before it removes any
�les.

However, you can easily write advanced aliases by making use of command line
history. For instance,

alias fc "fgrep \!* src/*.[ch] "

Allows me to type fc Metric rather than fc Metric src/*.[ch]. Note that
we have to protect the ! character. This causes the alias to contain !* expliclty
rather than all the arguments of the previous command, then when the alias
is evaluated, !* will contain the arguments at evaluate time.

This alias shows how you can use command line history discussed earlier in
your aliases. Any of the meta-character expressions explained earlier can be
used in an alias to extract parts or all of the command line.

For instance, lets say a lot of the time, you edit a �le, then copy it to a directory,
eg do something like

vi myfile
cp myfile ~/mydir

You could create an alias called, for instance, vic with the command

alias vic "vi \!:1; cp \!:1 \!:2"

which will vi the �rst argument, then copy the �rst argument into the second
argument. So the above two commands could be executed as vic myfile
~/mydir.

/bin/csh concepts and tricks 9

Globbing

Globbing is the process by which the csh handles wildcards in �le names. You
probably know some basic globbing techniques, such as ls *.html to list all
�les ending with the .html extension, but globbing is very powerful and allows
you great
exibility.

There are �ve basic constructs in a glob.

* Match any number of anything

? Match one of anything

[...]
Match one character in the brack-
ets

~ Your home directory

~user user's home directory

This is best shown with an series of examples. So here are some examples!

Expression Matches Doesn't Match

A*.html Albert.html
Robert.html
Alhtml

A*rt.? Albert.c
Albert.html
A Cat.html

A?[1-5].dat Ax3.dat
Ax1.dat

Albert1.dat
Ax6.dat

[A-C]*[1-
5][2468]?.html

Albert163.html
Charlie58x.html

Charlie52.html
Charlie621.html

Using foreach to access multiple �les

foreach is a very useful construction from the command line. It allows you to
loop over multiple �les and do the same thing to each �le. The basic syntax
is:

foreach VARIABLE (FILES)
? command on $VARIABLE
? command on $VARIABLE
? end

Where VARIABLE is anything you want and FILES is any acceptible �le or glob.

For instance, to print the name of each html �le in a directory, and follow that
with the number of lines, you could use

foreach C (*.html)
? echo $C
? wc -l $C

10 Intermediate Unix Training

? end

BackTicks
Backticks (`) return the output of a command in a form so that you can use
it in a command you construct. Take, for instance, the command uname -n
which returns the name of the current machine.

hopper(pwalker).62 % uname -n
hopper
hopper(pwalker).63 % pwd
/tmp
hopper(pwalker).64 % mkdir /tmp/`uname -n`
hopper(pwalker).65 % cd /tmp/`uname -n`
hopper(pwalker).66 % pwd
/tmp/hopper
hopper(pwalker).67 %

The utility of this function is limitless, but I won't mention it beyond this
simple example.

Grouping commands with ()

In the csh you can group sets of commands with (). The commands in these
parens have their own shell, and can do shell things, such as set environment
variables, redirect, and pipe, independently of the main shell.

The clearest example of this behaviour is with setenv which sets an environ-
ment variable for your current shell. Note that the setenv outside the parens
a�ects the entire session, but inside, a�ects only the commands inside.

hopper(pwalker).17 % setenv SUMPIN Hi
hopper(pwalker).18 % echo $SUMPIN
Hi
hopper(pwalker).19 % (setenv SUMPIN Lo; echo $SUMPIN)
Lo
hopper(pwalker).20 % echo $SUMPIN
Hi

/bin/csh concepts and tricks 11

12 Intermediate Unix Training

Chapter 2

Pipes and Redirection

What is a stream
Unix has a well de�ned concept of a data stream. There are three well de�ned
data streams in unix for all process, stdin, stdout and stderr.

The streams are merely
ows of data. stdin is the standard input for a process
and is usually generated via the keyboard. stdout is the standard output for a
process and is usually sent to the screen. stderr is the standard error channel
for a process, and is also usually sent to the screen. However, stderr only
contains error messages.

In many ways, you can consider every unix process a box which reads stdin
or command line arguments and based on that, creates something on stdout
or in a �le.

What is a pipe

A Pipe is used to connect the stdout of one process to the stdin of another
process. The jargon for this action is Piping into, eg pipe the output of com-
mand1 into command2

What is a redirect
A redirect is a method to turn a �le into a stream or a stream into a �le.
Redirects are used in two places, either at the beginning of a pipe to pipe a
�le into the stdin of a process or at the end of a pipe to pipe the stdout of
the process into a �le.

How do I use a pipe

The symbol for a pipe is j (the vertical bar, often shift-backslash). The essential
syntax for using pipes is

command1 | command2

which will connect the stdout of command1 to the stdin of command2.

Note you can pipe the stdout and stderr of a command into another command
using j&. For example,

command1 |& command2

This is often useful when commands make screenfuls of stderr, such as when
compiling codes.

How do I use a redirect (/bin/csh version)

Redirects are di�erent in di�erent shells. Here, I will use the /bin/csh version.

The 4 basic redirects in the csh are:

< Turn �le into stdin
> Turn stdout into a �le
>> Append stdout onto a �le

>& Turn stdout and stderr into a �le

For example:

a.out < input
The stdin of a.out is read from the
�le input

a.out > output The stdout of a.out is placed in the
�le output

a.out < input > output
The stdin of a.out is �le input and
the output goes into output

a.out >> output Append the output of a.out to
output

a.out < input >& output
stdin from input and stdout and
stderr to output.

(a.out > out std) >& out ste
Place stdout in out std and
stderr in out ste

14 Intermediate Unix Training

Chapter 3

Pipe Building Blocks

cat, -, and the bit bucket (/dev/null)

cat is sort of the pipe equivalent of a no-op. That is, cat merely re
ects
stdin in stdout. cat will also echo a �le onto stdout if that �le is given as
an argument.

Many unix commands take - as an argument where normally they would take
a �le. This means the command will look on stdin for its input rather than
trying to read a �le. Some of the commonly used commands which do this
include xv and gs.

/dev/null is a place you can redirect things you don't care about. You cant
get this information back, but it also won't clutter your screen or a �le.

Examples

cat nice.gif | xv -

is the equivalent of

xv nice.gif

cat file2

is the equivalent of

cp file1 file2

Do you see why?

cat file1 > /dev/null

is a wast of time! Do you see why?

more or less
more and less are roughly equivalent programs which show you a screenful of
output at a time. less a�cionados claim that less is in�nitely better than
more since it provides searching and navigation functionality not available in
more (for instance, the ablilty to go back through stdin). You can use either
(if less is installed on your system) and should read the man page.

less and more both take �les as arguments or read stdin for the information
to page. This lets you observe a pipe.

Examples If you want to look at a �le, use any one of

more a.file
more < a.file
cat a.file | more

Imagine a.out spews tonnes of information to your screen when given certain
parameters. You could observe these with

a.out < input | more

head and tail
head [-count] [file] and tail [-count] [file] print the �rst (head) or
last (tail) count lines of the �le [file] or stdin. The default value of count
is 10.

tail also has the useful option, tail -f, which will monitor a �le printing
new additions to it as the are added. This is very useful for watching code
output when it has been redirected, or following logs and the like.

Finally, tail -r reverses stdin and prints it out to stdout. This is often useful.
Examples This shows you the last 200 lines of /etc/passwd one screen at a
time.

cat /etc/passwd | tail -200 | more
tail -200 /etc/passwd | more

This runs a command and then watches the output accumulate in a �le.

a.out >\& a.file \&
tail -f a.file

16 Intermediate Unix Training

wc
wc counts all the words, lines, and characters in a �le or stdin. If you only
want words, lines, or characters, use the -wlc
ag respectively.

wc is useful for tallying how much code you've written (wc -l *.[ch] for
instance), or things like that. It also works in pipes, reading stdin. This will
be useful once we understand grep. Examples

wc -l HorizonMetric.c

tells me the number of lines in Horizon Metric.c

grep: Grab a Regular Expression

grep stands for Grab Regular ExPression. Yeah, I know it is a strange name,
but it is far less strange than the motive behind the name awk. grep has the
basic syntax grep [-i] [-v] Expression [file]. Actually, there is quite
a bit more to it (see man grep) but these are all the options we are going to
discuss here.

grep matches Expression against either the file or stdin. The default be-
haviour is that grep will echo any lines which match Expression to stdout.
The -v
ag forces grep to echo lines which don't match. The -i
ag forces
the matching to be done in a case independent fashion.

grep understands a limited set of regular expressions. This is usually enough
for most work. The consituents of a grep regular expression most frequently
needed are

"Normal" characters Match the character

^ Beginning of line

$ End of line
. Any single character

.* Any number of anything

Be careful using .* since the shell will interpret it. You will either need to
protect it (eg, .
) or more simply, put your expression in single quotes.

grep has two close relatives, fgrep and egrep. fgrep matches only text pat-
terns and is faster than grep. egrep has a more extensive regexp recognition.
Consult the man pages of these two commands. Examples of grep

These examples break down into 2 sets. The �rst set works on this �le, which
I've called ge:

hopper(pwalker).26 % more ge
pwalker
walker
walkerp

Pipe Building Blocks 17

orangejuice
was that a warp
hopper(pwalker).27 %

Now let us look at grep and some of its output acting on this �le.

hopper(pwalker).34 % grep walker ge
pwalker
walker
walkerp
hopper(pwalker).35 % grep -v !*
grep -v walker ge
orangejuice
was that a warp
hopper(pwalker).36 % grep ^walker ge
walker
walkerp
hopper(pwalker).37 % grep walker$ ge
pwalker
walker
hopper(pwalker).38 % grep 'wa.*p' ge
walkerp
was that a warp

The next set involve using grep in pipes. Here are some actual examples.

hopper(pwalker).49 % history 50 | grep pine
9 pine -i
11 pine -i
49 history 50 | grep pine

hopper(pwalker).50 % grep -i dave /afs/ncsa/common/etc/passwd
| wc -l

39
hopper(pwalker).51 % grep -i paul /afs/ncsa/common/etc/passwd

| grep -v walker | wc -l
114

where I have added line breaks to improve readability; You should have the
entire pipe on one line.

As you can see, using grep and wc together work very well, and gives a good
way to �gure out things like percentages of accesses to a server from Macintosh
(grep Mac agent log
| wc -l) as a fraction of total access (wc -l agent log). Grep is so useful,
I could go on forever, but I wont. I think there is enough information here to
get you started!

18 Intermediate Unix Training

[n]awk: Manipulate Columns

awk is a complete programming language which is nowhere near as useful as
perl. Writing large awk codes in a world with perl is not very useful unless you
already know awk and don't know perl. nawk is new awk, and you should use
nawk if it is available. On most systems, awk = nawk

However, nawk is very useful as a quick and dirty manipulator of columnar
textual data. columnar data is data arranged in columns with a separator
such as whitespace (the default) or some other delimiter, such as the : in
/etc/passwd and /etc/group. awk allows you to directly address, and in the
case of numerical data, maniuplate, the columns.

The basic syntax for this use of awk is

nawk -Fc '{print cols}' [file]

where -Fc is optional and speci�es the record separator. Without it, the default
separator is whitespace. cols is replaced with the columns of interest addressed
as $1, $2 etc... for column 1, 2 etc... file is an optional �le. Without it,
stdin is parsed.

Example 1. Numerical Data Imagine you have a text �le with data in polar
coordinates as

r theta
r theta
r theta

and you want to convert this to cartesian coordinates (x = r cos(theta), y = r
sin(theta)). Rather than writing a dumb little fortran or c program to do this,
you can use awk as follows.

nawk '{print $1*cos($2), $1*sin($2)}' polar.dat > cartesian.dat

Example 2. System �les Many system �les in unix are : delimited �les. For
instance, /etc/passwd has user information separated into columns with :.
(more /etc/passwd or man 4 passwd on your system for more info). You can
extract subsets of this information using awk. For instance, to extract users
(column 1), user numbers (column 3) and home directories (column 6) from
/etc/passwd, you could use

nawk -F: '{print $1, $3, $6}' /etc/passwd

Pipe Building Blocks 19

Other useful building blocks

There are several other useful items which I don't have time to go into exten-
sively, but will mention here.

sort

Sort sorts. It seems quite cryptic, though, and the only option I can every
remeber properly is sort -n which sorts numerically. This is useful to �nd
out your disk usage in an area, biggest directory �rst, with

du -k | sort -n | tail -r | more

man sort if you actually want to master this potentially useful utility.

tee

tee creates a sort of "T" junction in your pipe. It takes a �le as an argument.
The action of tee file is to take stdin and pipe it to both stdout and file.
This allows you to see intermediary results in pipes. For example:

grep walker /etc/passwd | tee all_the_walkers | grep paul
> all_the_paul_walkers

will create two �les for each stage of the pipe.

sed

sed is a stream editor. That is, it allows you to make ed/ex/vi like operations
on a stream. It is useful, and has a good man page. Given ini�nite time, I
would say learn sed. Given �nite time, learn perl instead. (There is a separate
lrc course on perl).

echo

Most people forget that echo can start a pipe. For instance:

hopper(pwalker).54 % echo Hi | wc -l
1

This is occasionaly useful.

An example: Superpipe!

For the superpipe, we are going to use /etc/passwd. Lets take a look at a line
from this �le from an SGI.

pwalker:x:15299:1023:Paul Walker,,217-244-1144:
/usr/people/ncsa/pwalker:/bin/csh

20 Intermediate Unix Training

where the line break is added to avoid wrapping. The entry is actually a single
line.

Notice the 5th �eld is of the form Full Name, Office, Phone and my o�ce
is not speci�ed here. Now, lets say we want to print out the o�ce and user
number of every person whose uses csh and whose name contains the string
wal, a commen sysadmin task indeed. Oh, also we want to save all the lines
from the original �le in walpwd.

So how do we do this? Well, clearly we have to start o� with a couple of greps,
eg,

grep wal /etc/passwd | grep "/bin/csh" |

and then a tee.

| tee walpwd |

OK, now we have to use awk twice. The �rst time we will turn the string into
the form userno,name,office,phone. This is done with

| awk -F: '{print $3 "," $5}' |

And �nally we want to split this on , and print out the �rst, second, and fourth
�eld.

| awk -F, '{print $1, $2, $4}' |

and for good measure, send it into more. So our �nal superpipe is:

grep wal /etc/passwd | grep "/bin/csh" | tee walpwd |
awk -F: '{print $3 "," $5}' |
awk -F, '{print $1, $2, $4}' | more

I've put in the line wraps for ease of viewing, but it could not be there on your
script.

OK, and lets see what this does on one of our machines:

farside(pwalker).238 % grep wal /etc/passwd | grep "/bin/csh" |
tee walpwd | awk -F: '{print $3 "," $5}' |

awk -F, '{print $1, $2, $4}' | more
15299 Paul Walker 217-244-1144

farside(pwalker).239 % more walpwd
pwalker:x:15299:1023:Paul Walker,,217-244-1144:
/usr/people/ncsa/pwalker:/bin/csh

where once again, I've added line breaks for ease of reading.

And this is, inded, a super-pipe!

Pipe Building Blocks 21

22 Intermediate Unix Training

Chapter 4

vi tricks and tips

Emacs
Many people, mostly stubborn emacs users, claim that the only thing you need
to know about vi is how to get out of it! This belief is due to the fact that
emacs is a widely available extensible wonderfully fabulous editor. Correctly
con�gured, it can do color sensitive highlighting of your text, indent and align
text cleverly, have di�erent behaviours based on the type of �le you are editing,
and many other features, none of which vi has.

If you plan to do a lot of editing in a Unix environment, let me encourage
you to use emacs for all your serious needs, since it is undeniably an in�ntely
superior editor.

However, you have to know vi. You need to know vi because it is universal,
quick, and often, you are kicked into it by some program. Even the most
convinced emacs users use vi for small tasks, and so, you need to know some
simple tips and tricks, the purpose of this chapter.

Marks and yanking/moving blocks of text

vi has the concept of a mark. A mark is a line in your document to which
you assign a special tag which is a letter. Once you have set a mark, you can
use that mark as a place keeper. vi can also use numbers as place keepers.
A number used as a place keeper speci�es a line number. Finally, vi has two
special marks $ which is used for the end of document and . which is used for
the current position.

A mark is set using the vi command mx where x is your mark tag.

Two of the most useful things you can do with marks is yank or delete text
between two marks. yanked or deleted text can then be restored to the current
cursor location by pulling it with p.

To yank text, use the command :'a,'by where a and b are marks. Note, a
and b can be numbers or a special mark, but then do not need the quote. This
text will remain in your bu�er but also be in your kill ring so it can be pulled
and thus copied. To delete a block of text, use :'a,'bd, which will delete your
area and put it in your kill ring.

Some examples are best, and it is probably easiest if you try along with these
(which is what we will do in class). Examples To delete everything between
the current position and the end of the document do

:.,$d

or between the beginning of the document and current position

:1,.d

A quick way to delete a chunk of text is to position the cursor at the beginning
of the text and make a mark with

md

Then reposition to the end of the block and use

d'd

which will delete everything from the current position to the mark d which we
made with the md command. This text could then be recovered by moving to
another location and issuing p

Finally to mark and delete a block of text, set 2 marks, then use

:'a,'bd

Searching and Replacing

Most of you know that /string will search for a string in your current vi
bu�er n will repeat the last search.

However, most vi users have a di�cult time searching and replacing. Luckily
this is quite easy. Simply use

:'a,'bs/old/new/[g]

where a and b are marks or line numbers (without the '). The optional g means
to replace everywhere. Without it, only the �rst occurance on each line will
be replaced.

Examples To replace green with blue in your entire document, use

:1,$s/green/blue/g

To replace blue with green in lines 10 through 24 use

:10,24:s/blue/green/g

24 Intermediate Unix Training

Line numbers
A very quick but very useful series of tips w.r.t. line numbers. Often you want
to go to a speci�c line number with vi. You can do this simply with

:number

eg :13.

You can display the line numbers of your current �le beside the line by using
:set number and turn it o� with :set nonumber.

These are very useful when editing and debugging programs.

Using your .exrc (NOT your .virc)

There are a few useful environement variables and defaults which you can set
to a�ect vi. Defaults are set in your ~/.exrc �le, and environment variables
are set in the standard fashion.

The one environment variable of interest is ESCDELAY which you may want to
set to a value of about 1500. This variable determines the amount of time
between when ESC is pressed and a new command is issued. Since arrow keys
form esc sequences, if the sequences are genreated too slowly, an arrow key
can, instead of moving your cursor, insert some garbage into your �le (which
often looks like ^[A). Try some values of ESCDELAY to �x this.

You can set any vi settable thing in your ~/.exrc �le. For instance, if you
always want numbers on, you should put in your ~/.exrc

set number

You should consult man vi for more info, but a very useful thing to set is

set ai

which causes an auto-indent feature. This means your cursor lines up at the
tab stop of your previous line when you create a new line. This is very useful for
program editing with vi. Of course, if you are doing serious program editing,
you should probably use emacs...

vi tricks and tips 25

26 Intermediate Unix Training

Chapter 5

File Management

Compressing with compress and gzip

The idea of compression is that in many �les, especially ascii �les, there is
an awful lot of redundancy which can be represented with much less data
than the standard representation. Thus, there is compression. Compression
programs take your �les and make them smaller, but unreadable except by
uncompression programs. When you are archiving or need to save space, you
should use compression.

There are 2 useful sets of commands for compression and uncompression of
�les in unix.

The standard unix compress utility creates compressed .Z �les. To compress
and uncompress a �le, use

compress bigfile.ps
uncompress bigfile.ps.Z

The Free Software Foundation has written a commonly used compression pro-
gram, gnu zip, or gzip which creates compressed .gz �les. gzip also reads .Z
�les. gzip is pretty much faster, more e�cient, better etc... You should use it
given the choice. To compress and uncompress with gzip, use

gzip bigfile.ps
gunzip bigfile.ps.gz

Note, gzip has levels of compression. If you don't mind waiting a little longer
to compress your �les, and want better compression ratio's, use gzip -9.

Handling multiple �les with tar

Often, it is useful to put multiple �les into a single �le before compressing,
sending to collaborators, or backing up. The easiest way to do this is using
tar. tar was originally designed to access tape drives, and it still does that
ver well, but most users will use it to make archive �les from multiple �les.

The basic syntax for creating an archive with tar is

cd /usr/people/me/mydir
tar cvf mydir.tar .

This will create a �le called mydir.tar which contains all the �les in and below
.. It will also show you the �les being added. You can remeber the
ag cvf
by thinking of create verbose file.

To extract a tar archive, you want to use

cd /usr/people/me/mynewdir
tar xvf mydir.tar

which will recreate the directories stored within mydir.tar and put them un-
derneath mynewdir. For xvf think eXtract verbose file.

If you simply want to see the contents of a tar �le, you can use tvf, eg:

tar tvf mydir.tar

Here, think Table of contents verbose file.

These are the three basic uses of tar. However, we will see in the section on
using tar in pipes that it can have other less obvious uses.

Locating �les with �nd

find is an incredibly powerful, rich, complex command which locates things in
the �lesystem based on a variety of conditions. With that complexity comes a
rather high level of di�culty, and we cannot possibly cover all the things �nd
can do here. Rather, here I will show a minimal amount of �nd syntax which
is often useful. Please consult man find to �nd out the rest of the story.

The basic usage of find is

find path condition action_list

findwill then do action list on all �les at or below pathmatching condition.

Now, each of these things can have many settings, and you should consult man
find to see the possiblities. However, I am only going to mention a few of the
options.

condition is the most complex of the options. The two most useful condition

ags are -name "glob" and -mtime +/-#. -name "glob" matches anything
matching glob. -mtime +/-# matches any �le modi�ed earlier than/since #
days.

action list also has many options. The two I will mention are -print and
-exec. -print simply prints all the matches to stdout with a pathname. -exec
is used to execute a command on the matched �le and has the syntax -exec
command
; where is replaced with the name of the current match. Examples The best
way to understand find is through some examples.

This prints all �les below the current directory which end in .c or .h.

28 Intermediate Unix Training

find . -name "*.[ch]" -print

This removes all core �les beneath your home directory

find ~ -name "core" -exec rm {} \;

This shows all occurances of mosaic in all html �les, as well as printing all
.html �les.

find . -name "*.html" -print -exec grep mosaic {} \;

Finally, these remove all �les more than 7 days old and print all �les modi�ed
within the last day.

find . -mtime +7 -exec rm {} \;
find . -mtime -1 -print

Be very careful with commands such as the �rst one on this line.

tar, gzip, and ftp with pipes

Of course, all of these commands are available in pipes, and many are very
useful. I will give here the examples I use the most often.

zcat and gunzip -c uncompress a �le and send the output to stdout, leaving
the �le compressed on disk. This is often useful if you want to simply view
a �le. For instance, imagine that you have compressed your postscript �le,
Fig.ps and now you want to see it without uncompressing it. You could use:

zcat Fig.ps.Z | gv -
gunzip -c Fig.ps.gz | gv -

depending on which compresser you used to compress it. Of course, you could
pipe this output into anything you wanted!

tar can create a �le onto stdout, and extract a tar �le from stdin, by replacing
the output or input tar �le with -. That is, the following pairs are identical

tar xvf mydir.tar
tar xvf - < mydir.tar

tar cvf mydir.tar .
tar cvf - . > mydir.tar

File Management 29

One of the most useful applications of this is to move a directory as well as all
its �les and subdirectories to another location. This is done by creating a tar
�le and piping it into a subshell which runs in a di�erent directory and untar's
stdin. That is,

tar cf - . | (cd ~/newdir ; tar xf -)

Note I left out the v option to both tars so the code will run silently.

Finally, you can compress stdin and send it to stdout, or uncompress stdin and
send it to stdout, using gzip and gunzip alone in a pipe. That is, these pairs
are equivalent.

gunzip -c foo.gz > bar
cat foo.gz | gunzip > bar

gzip -c foo > bar.gz
cat foo | gzip > bar.gz

Now this combination is very useful due to a little know property of ftp. ftp
allows you to specify pipes as source or receving �les. For instance, you can
get and view a gif image from an ftp site with

ftp> get file.gif "| xv -"

or view a �le with your favorite page using

ftp> get README "| more"

This is useful, but you can also use this trick to create a tar �le onto an ftp site
without making that tar �le on your local disk. This is invaluable for backup
processes. An example of this is

ftp> put "| tar cvf - ." myfile.tar

And to retrieve and untar, use

ftp > get myfile.tar "| tar xvf -"

Or, to send and compress a tar �le onto an ftp site, you can use this:

ftp> put "| tar cvf - . | gzip " myfile.tar.gz

That is, ftp makes a transfer transfer file dest by e�ectively taking the
stdout of cat file and piping this into dest.

30 Intermediate Unix Training

NFS File Permissions: chmod and umask
File Permissions state information about accessibility of a �le. Properties
which are included in �le permissions include whether a �le is readable, exe-
cutable, or writable by certain users or groups of users.

NFS breaks the entire user community into 3 classes. You, the user, which has
code u. Your group, g and the others o All users are a = ugo

The permissions which can be given to each of these classes are read, write,
and execute. ls -l tells you the permissions on a given �le. For example:

-rwxr-xr-x 1 pwalker user 13308 Oct 13 10:48 a.out

The �rst string here shows the permissions given to the classes. The �rst
character indicates the �le type. - means a normal �le. The next three are
the permissions for the user. Here the user has read, write, and execute per-
missions. The group permissions are the next three, and hear are read and
execute. The world permissions are the last set, here read and execute again.
This means that I can modify the �le but anyone can copy or execute it.

You can change the permissions on a �le using chmod. chmod has syntax chmode
permission files. permissions can be stated numerically (we will skip that;
See man chmod for more) or more intuitively, with strings.

The permission strings have the syntax class +/- permission, eg u+rwx to
give a user read, write, and execute, or go-rwx to remove read, write, and
execute from group and other. An example is:

hopper(pwalker).20 % chmod go-rx a.out
hopper(pwalker).21 % ls -l a.out
-rwx------ 1 pwalker user 13308 Oct 13 10:48 a.out

AFS File Permissions I: acl's
In AFS, the only relevant NFS �le permission is whether or not a �le is exe-
cutable. The remaining permissions are directory based permissions based on
AFS Users not user, group, and world like NFS.

The AFS Permissions for a directory can be examined by using the fs la
command. (la means list attributes). This will show you the acl (Access
Control Lists) for a directory. For example

hopper(pwalker).51 % fs la ./2DWave
Access list for ./2DWave is
Normal rights:
pwalker:twodwave rl
projects.genrel.admin rla
system:administrators rlidwka
system:anyuser l
pwalker rlidwka

File Management 31

This gives the lists of users and AFS groups which have various permissions.
Each character of the string indicates a permission, with the crucial ones being

r Read

l Lookup (eg, stat)

idwk
Various parts needed to write and
create

a Administer (eg, change acl's)

The �rst column indicates to whom those permissions belong. These holders
may be users (eg, pwalker) or groups (eg, pwalker:twodwave, projects.genrel.admin)
or special users (system:administrator, system:anyuser and system:authuser for
the administrators, any user regardless of tokenization, and any user with a
token).

You can set the AFS permissions in a directory using fs sa. For instance, if I
want to give user johnsonb write permission to my home directory, I could go:

hopper(pwalker).55 % cd /afs/ncsa/user/pwalker
hopper(pwalker).56 % fs sa . johnsonb rlidwk

This would allow Ben to write to my home directory. (I undid this example
immediately after issuing this command).

AFS provides shorthand for the most commonly used acl sets. read = rl.
write= rlidwk. all = rlidwka. So above, I could have said "fs sa . johnsonb
write".

ACL's allows user great deals of
exibility in setting permissions on directories.
In order to maximize e�ciency, though, we want to use AFS groups, to which
we turn our attention next.

AFS File Permissions II: Groups

Setting acls can be a great way to allow groups of users accesses to various
parts of your afs �le system. In order to maximize this ease of use, though,
you can create AFS Groups. Any user can create groups, and then assign
directory acl's to those groups rather than individuals.

The pts membership group command tells who is in a group. pts creategroup
group creates a group, pts adduser group adds a user, and pts removeuser
group removes a user.

An example is the easiest way to see how this works. Imagine I have a directory
called BigPerlProject and I want to set acls to that directory. I could use
the following:

farside(pwalker).19 % pts creategroup pwalker:big_p_proj
group pwalker:big_p_proj has id -750

farside(pwalker).20 % pts adduser johnsonb !$

32 Intermediate Unix Training

pts adduser johnsonb pwalker:big_p_proj

farside(pwalker).21 % pts adduser royh !$
pts adduser royh pwalker:big_p_proj

farside(pwalker).22 % pts adduser sbrandt !$
pts adduser sbrandt pwalker:big_p_proj

farside(pwalker).23 % fs sa . pwalker:big_p_proj write

farside(pwalker).24 % fs la .
Access list for . is
Normal rights:
pwalker:big_p_proj rlidwk
system:administrators rlidwka
system:anyuser l
pwalker rlidwka

farside(pwalker).25 %

so now johnsonb, royh, and sbrandt can write to this directory. As the project
personnel change or expand, I only have to modify this group, not each di-
rectory to which this group has permissions. As you can see, this is really a
powerful feature for collaboration.

File Management 33

34 Intermediate Unix Training

Chapter 6

Basic Scripting with the csh

Scripting with the csh is something you probably don't want to do too much
of. As a scripting language, the csh lacks many powerful features available in
real languages like perl and more powerful shells such as sh and bash.

However, short csh script can ease repetitive tasks and allow you to use your
already existant csh tricks in simple scripts. Also, con�guration �les such as
your ~/.cshrc use csh constructs, so understanding scripting can help you
modify them. In this section, we will cover scripting basics, command line
parsing, and simple control
ow in the csh. By the end of this chapter, you
should be able to read and write basic csh scripts.

In the rest of this chapter, I will use shell script and csh script interchangeably.
Most people think of shell script as /bin/sh, so this is sloppy language on my
behalf, but you've been warned!

Basic Ideas
The basic idea of scripting with the shell is that you have a set of commands,
and perhaps some control statements, which make the shell do a series of
commands. Basically there is no di�erence between a script and a program.

There are a few basic syntactical elements you need to know.

First, every shell script begins with the line

#!/bin/csh (optional arguments)

where (optional arguments) is an argument to the shell. The only argument
we will mention here is -f which stops the shell script from sourcing your
~/.cshrc.

This line tells a unix machine that everything in this �le should be processed
with the command /bin/csh. You can use this exact same syntax to run other
programs over a script, which is how sh and perl scripts work.

Next, anything after a # is a comment. For instance

This line does nothing
/bin/ls # This line runs ls, but this is a comment

Finally, anything else is run by the csh

The Simplest Script of All!

OK, so lets start with the simplest shell script there possibly is. This script
doesn't o�er much more than an alias, but it shows a full example of creating
a script. It is also very contrived!

Lets say that lots of times in a directory, we do an ls *.o followed by ls -l
a.out. Here is a script which does that

#!/bin/csh
A very simple csh script!

/bin/ls *.o
/bin/ls -l a.out

To make this script executable, save it as my script and issue the command
chmod u+x my script (for more on chmod see the section on nfs �le permis-
sions (p. 31)). Then run it with my script alone on a line.

Here are a couple of things to note

1. Even this simple script has a comment!
2. Note I used /bin/ls rather than just plain ls. This means that any

aliases for ls will be ignored, which will make the behaviour of the script
portable. However, if you have ls aliased and don't realize it (which is
the case with many people) this may produce unexpected results.

Grabbing Command Line Arguments

Command line arguments are passed into your shell script as special variables.
There are two ways to address these variables, and thus grab command line
args.

The �rst method is to use the variables $n, eg $1 is the �rst argument. $0 is
the name of the script. You can use these variables as you would any other
string, eg, as arguments to commands and the like.

The second method is to use the special array $argv. You can grab an ar-
gument as a member of this array, eg, $argv[n] is the nth argument. Note
that you can also address $#argv, the total number of arguments. (This is an
example of an unmentioned feature, which is for any array in the csh, $#array
is the length of the array). Note that $#array returns the position of the last
element, so it returns the number of elements - 1.

Here is an example of parsing command line args, shown by a simple script
ShowArgs

#!/bin/csh
An example of showing command line arguments with echo, and
doing things with them with /bin/ls

Method 1 uses dollar number

36 Intermediate Unix Training

echo --
echo Script: $0
echo
echo $1 was first and then $2 and $3
/bin/ls -l $1
echo --

Method 2 uses argv array
echo $argv[1] was the 1 out of $#argv args to $argv[0]
/bin/ls -l $argv[2]
echo --

And here is the output:

hopper(pwalker).612 % ShowArgs ken.f ben.jpg addr.pl
--
Script: ShowArgs

ken.f was first and then ben.jpg and addr.pl
-rw-rw-rw- 1 pwalker user 32243 Nov 21 09:40 ken.f
--
ken.f was the 1 out of 3 args to
-rw-r--r-- 1 pwalker user 34394 Nov 9 14:40 ben.jpg
--

Get it?

Using Variables

You can use variables in the csh for many things, but the three uses I will
discuss here are

1. Getting environment information
2. Storing user-de�ned information
3. Getting command output with backticks

Getting information from the environment is trivial. If you want to use an
environment variable FOO in your script, simply address it as $FOO, just like
you would on the command line

Using variables to save user-de�ned information, such as executable locations,
is a good habit since it eases portability and modi�cation of your script. The
archetypical example is to set a variable to point at an executable, then if the
executable moves, your script only need change in one spot. A short example
of this is

#!/bin/csh
Run /usr/people/pwalker/mycmd from a script
set MYCMD = /usr/people/pwalker/mycmd
$MYCMD

Basic Scripting with the csh 37

I'd reccomend that you make all executables you call, even ls and rm variables
to fully resolved paths, then you can avoid user aliases making unexpected
script behaviour etc...

The �nal use is to store the output of backticks. For instance, an often seen
construct is

set DATE = `date`

Conditionals with if

Conditionals allow you to execute parts of code only if certain conditions are
true. The conditional construct we will consider in the csh is:

if (condition) then
statements

else
statements

endif

where the else block is optional.

The only conditions we will discuss here are equality and non-equality among
string variables, represented by == and !=. Examples of these are

"pwalker" == "pwalker" true

"pwalker" == "johnsonb" false

$DISPLAY == "hopper:0" Checks value of $DISPLAY

As an example of this, I present this somewhat self-serving script:

#!/bin/csh
compare my login with the login I *wish* I was

set ME = `whoami`
set IWISHIWERE = "pwalker"

if ($ME == $IWISHIWERE) then
echo You are cool

else
echo You are not as cool as $IWISHIWERE

endif

Now, when I run it, we see

hopper(pwalker).76 % if.sh
You are cool

38 Intermediate Unix Training

but when user web runs it, we �nd:

farside(web).32 % if.sh
You are not as cool as pwalker

as expected.

Loops with foreach

Using foreach in a csh script is just as simple as using it on the command line,
as described in the csh tricks and tips section (p. 10). You simply will not be
prompted with a ? but will put your commands between the foreach() and the
end.

Here is a simple example

#!/bin/csh

foreach C (`ls`)
echo $C
end

just as expected.

Writing to stdin with <<

The �nal aspect of shell scripting I want to mention is writing to the stdin of
a process using the << construct. The basic construction here is

command <<TAG
stuff sent to stdin of command

TAG

There are many uses for this, including controlling programs which read stdin.
The example I'm going to give here, though, will show how to originate an
item of mail to a user based on a command line argument.

#!/bin/csh
DemoEndDoc
Send the size of $1 to user $2

Use backticks to grab the file info
setenv RESULT = `/bin/ls -l testmxs`

Start up a "mail" process.
mail $2 <<ENDMAIL
Subject: Size of file \$1

Basic Scripting with the csh 39

Hi there $2.

Here is ls -l for $1

$RESULT

- Paul
ENDMAIL

End of script

You should be aware that their are some subtleties involved in whether or
not you enclose your TAG in quotes or not. If you do, then variables will
not be expanded in your input. However, if you are running into this sort of
problem, you're probably doing something far too tricky for csh programming,
and should rewrite it in /bin/sh or perl!

Also note the sneaky way I fake up the Subject: header in the outgoing mail.

40 Intermediate Unix Training

Chapter 7

Miscellanous Other Things

Starting up with your . �les

When you start a new shell, the shell will execute all the commands in your
~/.cshrc, and when you log in for the �rst time, it sources your ~/.cshrc
and then your ~/.login. Thus, users use the ~/.login to set things they only
need set once, such as terminal types, and their ~/.cshrc to set things they
need in all their processes, such as aliases.

If you change one of these �les, you do not need to log out and then log back
in. Rather you can simply source the �le, eg source ~/.cshrc

Any of the commands we have discussed to day can be put in your . �les.
The most useful of these, though, is alias. For instance, many people have the
following cannonical aliases:

alias ls ls -FC
alias rm rm -i
alias a alias
alias h history
alias m more

Of course, you can make up whatever aliases you like!

Also your ~/.cshrc and ~/.login set several important environment variables.

Your path gives a list of where the shell searches for executables.

Your TERM is your current terminal type.

Your DISPLAY tells where XWindows information is displayed.

Finally, many people set their prompt with the .cshrc. There are many ways
to do this, and I won't explain it at length, but a personal favorite (which
gives, for instance hopper(pwalker).36 %) is

set prompt = "`hostname | sed -e 's/\..*//'`($LOGNAME).\! % "

Seeing whats running and stopping it with ps and kill

ps shows processes which are currently running on a machine. ps has two basic
varients, the SYSV and BSD. Suns are BSD, SGI's are SYSV.

Once again, this is a command with many options. See man ps for more info.

On a BSD-type machine, you can show all processes with ps -aux. Let's look
at an example:

danube(pwalker).11 % ps -aux | grep pwalker
pwalker 16331 39.5 1.9 256 576 p7 R 14:35 0:00 ps -aux
pwalker 16314 17.1 1.6 104 504 p7 S 14:34 0:06 -csh (csh)
pwalker 16332 2.1 1.2 96 360 p7 S 14:35 0:00 grep pwalker

The most important �elds are the user, PID (column 2) time (second-to-last)
and process name.

On a SYSV-type machine, you can show all processes with ps -ef. eg,

farside(pwalker).20 % ps -ef | grep pwalker
pwalker 24308 24307 0 09:06:08 pts/4 0:03 -csh
pwalker 29735 29734 2 12:42:14 pts/10 0:01 -csh
pwalker 4253 29735 9 14:39:08 pts/10 0:00 ps -ef
pwalker 4254 29735 1 14:39:08 pts/10 0:00 grep pwalker

Once again, column 1 and 2 are the user and PID. Column 3 is the Parent (eg,
executing process's) PID. The last two are time used and command.

The PID of the a process is very useful, since you can use the PID in conjunction
with kill to kill a process. Varients of kill are kill PID to kill process with
PID, kill -9 PID to kill it now (which is often unclean, but always e�ective)
and kill -9 -1 which kills all your processes including usually your current
shell. So, I could kill one of my csh processes on farside with kill -9 29735.

See whos on with �nger and who

finger user@host gives you information about user on host For instance,

farside(pwalker).179 % finger pwalker@loki
[loki.ncsa.uiuc.edu]
Login name: pwalker In real life: Paul Walker
Phone: 217-244-3008
Directory: /u/ncsa/pwalker Shell: /bin/csh
On since Oct 17 13:04:31 on ttyq37 from hopper.ncsa.uiuc.edu
1 hour 16 minutes Idle Time
No Plan.

42 Intermediate Unix Training

(Note: you can create a ~/.plan �le which contains the a message to print
rather than No Plan).

finger @host gives you information about all the users on host.

finger gives you information about all the users on localhost.

who is a program like �nger, about which I will only say see man who. Note
that the argument am i to who (eg, who am i) is useful, since it returns your
username and tty information. Use whoami or $LOGNAME to get just your user-
name.

See whats up with ping, rup, and uptime

Several utilities tell you the status of a machine in unix.

ping sends packets to a machine and expects them to come back. This is
useful to see if your local machine can reach another. The syntax is simply
ping machine.

uptime reports the uptime and load on your local machine. The output looks
like:

farside(pwalker).193 % uptime
2:51pm up 8 days, 6:22, 19 users, load average: 1.58, 1.70, 1.55

The most important number reported here is the load average, averaged over
1, 5, and 15 minutes (usually). The load average gives an idea of the number
of processes running at once. On a single processor machine, a load of 1
is maximum e�cient utilization. Loads more than the number of processors
mean the machine is too heavily loaded.

rup host gives uptime information about a remote host in e�ectively the same
format.

Seeing where it lives with which

Many commands you use are in your path. Sometimes it is useful to know
where in your path they are. Hence the command which. For example,

farside(pwalker).195 % which xemacs
/usr/ncsa/bin/xemacs

This is often useful when a system has several copies of an executable, or you
are trying to see when an executable was last modi�ed. Note which will source
your .cshrc before starting so it can handle aliases, eg

farside(pwalker).197 % which rm
rm aliased to "rm -i"
/bin/rm

Miscellanous Other Things 43

Seeing whats left and used with du, df, and fs lq

Three commands help you manage your disk usage properly.

du tells you your total disk usage. Oft used options are du -k which makes
it report in kB and du -s which simply sums in the current directory rather
than recursing down directories. These can be combined into du -sk.

A usesful pipe to show you your usage with the most used directory at the top
is

du -k | sort -n | tail -r | more

df -k tells you about kB free on NFS or mounted �le systems. The usual report
contains kbytes available and used, as well as a mount point (eg, directory
name) for the �le system.

fs lq dir tells you the afs quota available in dir.

Seeing whats changed with di�

You can compare two �les for di�erences using diff. diff will tell you exactly
where �les di�er and what the di�erences are. Take these two example �les:

ham.1 ham.2

Hey.
Shakespeare wrote in
Hamlet:
to be
or not to be
That is the question
whether 'tis nobler to su�er
the slings and arrows
of outrageous fortune

Hey.
Shakespeare wrote in
Hamlet:
2b
or not 2b
That is the question
whether 'tis nobler to su�er
the slings and arrows
of outrageous fortune

diff will point out that ham.2 has the alternate spelling of "to be"

hopper(pwalker).42 % diff ham.1 ham.2
4,5c4,5
< to be
< or not to be

> 2b
> or not 2b
hopper(pwalker).43 %

Note it tells you it is comparing lines 4,5 of �le 1 to lines 4,5 of �le 2, and
shows the stu� from �le 1 with a < and �le 2 with an >.

44 Intermediate Unix Training

Things I don't have time to mention

There are many other tools which are very useful. You should consider learning
them. I don't have time for any details here, but will give a simple one line
description of each.

make, gmake
These allow you to compile multi-�le projects based on change dates,
making sure your current build is up to date with your source. gmake is
from the FSF, and is better than make for the most part

sccs, rcs
These allow you to have control of your source code with versioning,
di�erencing versions, backing out versions and the like. rcs is from the
FSF and is better than sccs for the most part.

pine, pico
pine and pico are the best terminal mailer and quick-and-dirty editor
available, in my opinion. If a unix non-user needs to edit, let em use
pico, if it is installed.

perl
The all-purpose super scripting/programing language.

ph
Access the U of I phone book on most UI systems.

Miscellanous Other Things 45

46 Intermediate Unix Training

Chapter 8

Concluding Comments

Of course, the material in this course did not cover even close to all the aspects
of the concepts or commands mentioned. For that, I would suggest three
resources.

First, just look over the shoulder of other Unix users you know. This is how
you pick up many neat tricks. Be sure you ask em if it is OK �rst, of course!

Second, read the man pages for these commands. After this course, you should
be able to understand them pretty easily. Remeber, all the information you
could possible want about a command is just a man command away!

Finally, I highly recommend the book Unix in a Nutshell published by O'Reilly
and Associates. They have it at all the bookstores in town, and it only costs
about $10. This reference has all the information in this course plus much more
in an easy to use concise reference. I would be lost without a copy
oating
around my o�ce!

