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Abstract

Pursuant to the authors’ previous chaotic-dynamical model for random digits of fun-
damental constants [3], we investigate a complementary, statistical picture in which pseu-
dorandom number generators (PRNGs) are central. Some rigorous results such as the
following are achieved: Whereas the fundamental constant log2 = 3, -+ 1/(n2") is not
vet known to be 2-normal (i.e. normal to base 2), we are able to establish b-normality
(and transcendency) for constants of the form Y~ 1/(nb") but with the index n constrained
to run over certain subsets of Z1. In this way we demonstrate, for example, that the con-
stant ag3 = 3,332 32 1/(n2") is 2-normal. The constants share with 7, log2 and others
the property that isolated digits can be directly calculated, but for the new class such
computation is extraordinarily rapid. For example, we find that the googol-th (i.e. 10'%°-
th) binary bit of ay 3 is 0. We also present a collection of other results — such as density
results and irrationality proofs based on PRNG ideas — for various special numbers.
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1. Introduction

We call a real number b-normal if, qualitatively speaking, its base-b digits are “truly
random.” For example, in the decimal expansion of a number that is 10-normal, the digit
7 must appear 1/10 of the time, the string 783 must appear 1/1000 of the time, and so
on. It is remarkable that in spite of the elegance of the classical notion of normality,
and the sobering fact that almost all real numbers are absolutely normal (meaning b-
normal for every b = 2,3,...), proofs of normality for fundamental constants such as
log2, 7, ((3) and v/2 remain elusive. In [3] we proposed a general “Hypothesis A” that
connects normality theory with a certain aspect of chaotic dynamics. In a subsequent
work, J. Lagarias [28] provided interesting viewpoints and analyses on the dynamical
concepts.

In the present paper we adopt a kind of complementary viewpoint, focusing upon pseu-
dorandom number generators (PRNGs), with relevant analyses of these PRNGs carried
out via exponential-sum and other number-theoretical techniques. One example of success
along this pathway is as follows: Whereas the possible b-normality of the fundamental
constant

1
log2 = Z -

neZt

remains to this day unresolved (for any b), we prove that for certain subsets S C Z% and
bases b, the sum

1

7
nes nb

is indeed b-normal (and transcendental). An attractive special case is a number we denote
Qi3,3, obtained simply by restricting the indices in the log 2 series definition to run over
powers of 3:

1 <01

Q23 = Z non = 23k23k
n=3k>1 k=1

= 0.0418836808315029850712528986245716824260967584654857 . . .19
= 0.0AB8E38F684BDA12F684BF35BA7T81948BOFCDEEOE06522C3F35B. . .46,

which number we now know to be 2-normal (and thus 16-normal as well; see Theorem
2.2(6)). It is of interest that until now, explicit b-normal numbers have generally been
what one might call “artificial,” as in the case of the 2-normal, binary Champernowne
constant:

Cy = 0.(1)(10)(11)(100)(101)(110)(111)-- -5,

with the (-) notation meaning the expansion is constructed via concatenation of registers.
Now with numbers such as a3 5 we have b-normal numbers that are “natural” in the sense
that they can be described via some kind of analytic formulation. Such talk is of course
heuristic; the rigor comes in the theorems of the following sections.



In addition to the normality theorems applicable to the restricted sums mentioned
above, we present a collection of additional results on irrationality and b-density (see
ensuing definitions). These side results have arisen during our research into the PRNG
connection.

2. Nomenclature and fundamentals

We first give some necessary nomenclature relevant to base-b expansions. For a real
number o € [0,1) we shall assume uniqueness of base-b digits, b an integer > 2; i.e.
a = 0.byby - - - with each b; € [0,b—1], with a certain termination rule to avoid infinite tails
of digit values b— 1. One way to state the rule is simply to define b; = |#’a|; another way
is to convert a trailing tail of consecutive digits of value b—1, as in 0.4999 - .. — 0.5000 - - -
for base b = 10. Next, denote by {a}, or @ mod 1, the fractional part of «, and denote
by ||a|| the closer of the absolute distances of a mod 1 to the interval endpoints 0, 1; i.e.
|la|| = min({a}, 1 —{a}). Denote by («a,) the ordered sequence of elements ag, a1, . ... Of
interest will be sequences (a,) such that ({a,}) is equidistributed in [0, 1), meaning that
any subinterval [u,v) C [0,1) is visited by {a,} for a (properly defined) limiting fraction
(v — u) of the n indices; i.e., the members of the sequence fall in a “fair” manner. We
sometimes consider a weaker condition that ({a,}) be merely dense in [0, 1), noting that
equidistributed implies dense.

Armed with the above nomenclature, we paraphrase from [3] and references [27] [21]
[33] [25] in the form of a collective definition:

Definition 2.1 (Collection) The following pertain to real numbers « and sequences of
real numbers (o, € [0,1) : n = 0,1,2,...). For any base b = 2,3,4... we assume, as
enunciated above, a unique base-b expansion of whatever real number is in question.

1. « is said to be b-dense iff in the base-b expansion of a every possible finite string of
consecutive digits appears.

2. ais said to be b-normal iff in the base-b expansion of « every string of k£ base-b digits
appears with (well-defined) limiting frequency 1/6*. A number that is b-normal for
every b = 2,3,4,... is said to be absolutely normal. (This definition of normality
differs from, but is provably equivalent to, other historical definitions [21] [33].)

3. The discrepancy of (a,), essentially a measure of unevenness of the distribution in
[0,1) of the first NV sequence elements, is defined (when the sequence has at least N
elements)

N:a, b
Dy = sup PN ian€[ab))
0<a<b<1 N

—(b—a)|.
4. The gap-maximum of («, ), the largest gap “around the mod-1 circle” of the first NV
sequence elements, is defined (when the sequence has at least N elements)

Cin = k:g,l,'%_l ||5(k+1)modN — Bk mod N1/,
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where (3,) is a sorted (either in decreasing or increasing order) version of the first
N elements of (a,)

On the basis of such definition we next give a collection of known results in regard to
b-dense and b-normal numbers:

Theorem 2.2 (Collection) In the following we consider real numbers and sequences as
in Definition 2.1. For any base b = 2,3,4 ... we assume, as enunciated above, a unique
base-b expansion of whatever number in question.

1.

If « is b-normal then « is b-dense,

Proof. If every finite string appears with well-defined, fair frequency, then it
appears perforce.

If, for some b, « is b-dense then « is irrational.

Proof. The base-b expansion of any rational is ultimately periodic, which means

some finite digit strings never appear.

Almost all real numbers in [0, 1) are absolutely normal (the set of non-absolutely-
normal numbers is null).

Proof. See [27], p. 71, Corollary 8.2, [21].

« is b-dense iff the sequence ({b"a}) is dense.

Proof. See [3].

a is b-normal iff the sequence ({0"a}) is equidistributed.

Proof. See [27], p. 70, Theorem 8.1.

Let m # k. Then « is b*-normal iff « is b™-normal.

Proof. See [27], p. 72, Theorem 8.2.

Let ¢,r be rational, ¢ # 0. If « is b-normal then so is go + r, while if ¢ = 7 is an
integer then « is also ¢-normal.

Proof. For the b-normality of qa, see [27], p. 77, Exercise 8.9. For the additive
(47) part, see end of the present section. For the c-normality see [27], p. 77, Exercise

8.9.
(Weyl criterion) A sequence ({a,}) is equidistributed iff for every integer h # 0
N-1

Z e??rihozn — O(N)

n=0

Proof. See [27], p. 7, Theorem 2.1.



9. (Erdés—Turan discrepancy bound) There exists an absolute constant C' such that
for any positive integer m the discrepancy of any sequence ({a,}) satisfies (again,
it is assumed that the sequence has at least N elements):

).

Proof. See [27], pp. 112-113, where an even stronger Theorem 2.5 is given.

m o q 1N—1

Z e??rihozn
N

n=0

10. Assume (z,,) is equidistributed (dense). If y,, — ¢, where ¢ is constant, then ({z, +
yn}) is likewise equidistributed (dense). Also, for any nonzero integer d, ({dx,}) is
equidistributed (dense).

Proof.  For normality (density) of ({x, 4+ y.}) see [3] [27], Exercise 2.11 (one
may start with the observation that (v, + y,) = (#, + ¢) + (v — ¢) and ({z,, + ¢})
is equidistributed iff (x,) is). The equidistribution of ({dx,}) follows immediately
from parts 5,8 above. As for density of ({dx,}), one has {dz,} = {d{x,}} for any
integer d, and the density property is invariant under any dilation of the mod-1
circle, by any real number of magnitude > 1.

11. Given a number «, define the sequence («a,) = ({0"a}). Then « is b-dense iff

lim GN = 0.

N—co

Proof. The only-if is immediate. Assume, then, the vanishing limit, in which case
for any € > 0 and any point in [0,1) some sequence member can be found to lie
within ¢/2 of said point, hence we have density.

12. Assume « and the corresponding sequence of the previous item. Then « is b-normal

iff

lim DN = 0.

— 00

Proof. See [27], p. 89, Theorem 1.1.

Some of the results in the above collection are simple; some are difficult; the aforemen-
tioned references reveal the difficulty spectrum. This collective Theorem 2.3 is a starting
point for many interdisciplinary directions. Of special interest in the present treatment
is the interplay between normality and equidistribution.

We focus first on the celebrated Weyl result, Theorem 2.3(8). Observe the little-
o notation, essentially saying that the relevant complex vectors will on average exhibit
significant cancellation. An immediate textbook application of the Weyl theorem is to
show that for any irrational «, the sequence ({na}) is equidistributed. Such elementary



forays are of little help in normality studies, because we need to contemplate not multiples
na but the rapidly diverging constructs 6" a.

We shall be able to put the Weyl theorem to some use in the present treatment. For
the moment, it is instructive to look at one nontrivial implication of Theorem 2.3(8).
We selected the following example application of the Weyl sum to foreshadow several
important elements of our eventual analyses. With Theorem 2.3(5,6,8) we can prove part
of Theorem 2.3(7), namely: If « is b-normal and r is rational then a + r is b-normal. Let
r = p/q in lowest terms. The sequence of integers (6 mod ¢) is eventually periodic, say
with period T'. Thus for some fixed integer ¢ and any integer n we have "7 mod ¢ = c.
Next we develop an exponential sum, assuming nonzero h:

N-1 N-1
spanT : spanT
- § :627T2hb (a+p/q) — eQ?mhcp/q § :627T2hb a
n=0 n=0

Now a chain of logic finishes the argument: « is b-normal so it is also b’-normal by
Theorem 2.3(6). But this implies S = e2™#?/19( N') = o(N) so that o + p/q is bT-normal,
and so by Theorem 2.3(6) is thus b-normal.

3. Pseudorandom number generators (PRNGs)
We consider PRNGs under the iteration

t, = (bxp_1+r,) modl,

which is a familiar congruential form, except that the perturbation sequence r, is not
vet specified (in a conventional linear-congruential PRNG this perturbation is constant).
Much of the present work is motivated by the following hypothesis from [3].

Hypothesis A (Bailey—Crandall) If the perturbation r, = p(n)/q(n), a non-singular
rational-polynomial function with degq¢ > degp > 0, then (z,) is either equidistributed
or has a finite attractor.

It is unknown whether this hypothesis be true, however a motivation is this: The normality
of many fundamental constants believed to be normal would follow from Hypothesis A. Let
us now posit an unconditional theorem that leads to both conditional and unconditional
normality results:

Theorem 3.1 (Unconditional) Associate a real number

o0

n
p= Y
n=1 b
where lim,_.. 7, = ¢, a constant, with a PRNG sequence (x,) starting o = 0 and

iterating
t, = (bxp—1+r,) mod l.

Then (x,) is equidistributed (dense) iff 4 is b-normal (b-dense).



Proof. Write

W —ag = Y b — (0T 6 4 )
n=1
Td+1 Td+2
b _I_ bQ _I_ e — C/7

with ¢ being a constant. Therefore by Theorem 2.2(10) it follows that /4 is b-normal. Now
assume b-normality. Then (x,) is the sequence ({6?3}) plus a sequence that approaches

constant, and again by Theorem 2.2(10) (x4) is equidistributed (dense) iff 3 is b-normal
(dense)..

In our previous work [3] this kind of unconditional theorem led to the following (condi-
tional) result:

Theorem 3.2 (Conditional) On Hypothesis A, each of the constants

m, log2, ((3)

is 2-normal. Also, on Hypothesis A, if ((5) be irrational then it likewise is 2-normal.

Theorem 3.2 works, of course, because the indicated fundamental constants admit of
polylogarithm-like expansions of the form Y r,b™" where r, is rational-polynomial. The
canonical example is
log2 = 3
O _=
5 n2n

n=1

and 2-normality of log 2 comes down to the question of whether (for xy = 0)
1
t, = (2x,_1+ —) mod 1
n

gives rise to an equidistributed (z,). The main results of the present paper will be to
establish equidistribution for generators reminiscent of, but not quite the same as, this
one for log 2.

With a view to ultimate achievement of normality results, let us take a brief tour of
some other (not rational-polynomial) perturbation functions. The iteration

t, = (2v,-1+ WL—”) mod 1
is associated with the constant
n
ﬂ = Z 2?7

n>1
which is 2-dense but not 2-normal, as we establish later. Another rather peculiar pertur-

bation, for base b = 4, is

1 4n+1
(2n)!dn + 2

r, =



If the associated PRNG is equidistributed, then 1/y/e is 2-normal. Likewise, and again
for base b = 4, a result of equidistribution for a perturbation
(2n=3)!!  (2n—=3)2n —=5)---3-1

n! onn—Dn-2)---2-1

r, =

would prove that v/2 is 4-normal, hence 2-normal. It might have seemed on the face of it
that the decay rate of the perturbation r, has something to do with normality. But the
conditional results on Hypothesis A involve only polynomial-decay perturbations, while
the statements immediately above involve rapid, factorial decay. On the other hand there
are very slowly-decaying perturbation functions for which one still embraces the likelihood
of normality. For example, the mysterious Euler constant v can be associated with the
base b = 2 and perturbation function r, that decays like n='/? (see Section 5 and [3])..
In a spirit of statistical investigation let us revisit once again the canonical case of
the number # = log2 and base b = 2. For the purpose of discussion we write out for

d=1,2,3,... an iterate as assembled from d explicit terms:
29=1 mod 1 n 292 mod 2 n 243 mod 3 I 2 n 1 41
Ty = oot ——+ =] mo
! 1 2 3 d—1"4d

and remind ourselves that
2d 10g2 = x4+ td,

where t; is a “tail” term that vanishes in the limit, but is also a kind of source for
subsequent generator iterates. (Note that the first term always vanishes modulo 1; we
include that term for clarity.) One can think of such a PRNG as a “cascaded” random
number generator, in which distinct generators (29=™ mod m)/m are added together, with
the number of moduli m steadily diverging.

There are difficult aspects of the PRNG analysis for log 2. First, the theory of cascaded
PRNGs appears difficult; even the class of generators with fired numbers of summands are
not completely understood. Second, even if we succeeded in some form of equidistribution
theorem for cascaded generators, we still have the problem that the tail ¢; is to be added
into the final segment of the generator that has just been started with its power-of-two
numerators.

These difficulties may be insurmountable. Nonetheless, there are two separate ap-
proaches to altering the log2 PRNG such that density and normality results accrue.
These separate modifications are:

o Arrange for some kind of synchronization, in which iterates change number-theoretical
character on the basis of a “kicking” pertubation that emerges only at certain iter-
ates.

o Arrange somehow for the tail #; to be so very small that meaningful statistical
properties of the first d + d' generator terms are realized before ¢, is significantly
magnified via d’ multiplies by b.



We shall be able to apply both of these qualitative alterations. For the first case
(kicking/synchronization) we shall finally achieve normality proofs. For the second kind
of alteration (small tail) we shall be able to effect some proofs on density and irrationality.

4. PRNGs admitting of normality proofs

Herein we exhibit a class of generators—we shall call them (b, p)-PRNG systems, for
which normality proofs can be achieved, due to the special synchronization such generators
enjoy. We begin with some necessary nomenclature (we are indebted to C. Pomerance for
his expertise, ideas and helpful communications on nontrivial arithmetic modulo prime
powers).

Definition 4.1 We define a (b, p)-PRNG system, for base b > 2 and odd prime p coprime
to b, as the sequence of iterates defined zq = 0 and

t, = (br,—1+7r,) modl,

where the perturbation is given by

for k£ > 1, with all other r; = 0.

Remark 1. Just knowing the pair (b, p) determines the PRNG and its properties.
Consider the parameter a, defined by p*||(b™ — 1) with 7y being the order of b modulo p.
It is known that the order, then, of b modulo p* is given by

T = TlpmaX(O,k—a)‘

For example, for b =2 and p = 7 we have 2° —1 =7, s0 7, = 3, @ = 1 and the order of 2
modulo 7% is thus 7, = 3 - 7"~!. For b = 2 again, and a Wieferich prime such as p = 1093
we have 7, = 364 and p?||(2%* — 1), so in this case @ = 2, whence for & > 1 we have

7, = 364 - 1093%=2. (Thus for example the order of 2 modulo 1093 is also 364.)

Remark 2.  One could attempt to expand the (b, p)-PRNG definition to include the
even-modulus case p* = 2%, with odd b > 3, in which case the rules run like so: If 2%|(b—1)
then the order is 7, = 1, else if 2¥|(b? — 1) then 7, = 2, else define a by 2%||(4* — 1), whence
the order is 7, = 2!~ One expects therefore that normality results would accrue for
a (b,2)-PRNG system, odd b > 3. However we do not travel this path in the present
treatment; for one thing some of the lemmas from the literature are geared toward odd
prime powers, so that more details would be required to include p = 2 systems.

The perturbation r, for a (b, p)-PRNG system is thus of the “kicking” variety; happening
indefinitely, but not on every iteration, and in fact, happening progressively rarely. Be-
tween the “kicks,” iterates of the sequence are, in effect, repetitions of a certain type of



normalized linear congruential PRNG. This is best seen by examining a specific example.
Consider successive iterates of the (2,3)-PRNG system, whose iterates run like so:

1 2 4 8 7
($0, $1,...,$26,...)—(0 g g § § §
13 26 25 23 19 11 22 17 7 14 2 4 8 16 5 10 20
277277 277 277 277 277 277 277 277 270 277 270 277 277 277 270 277 27
40 )
81’

5
9’
1

A pattern is clear from the above: The entire sequence is merely (after the initial 0)
a concatenation of subsequences of respective lengths 2 - 3*~!, for k = 1,2,.... Each
subsequence is the complete period of a certain linear congruential PRNG normalized
by 3*. Note that since 2 is a primitive root modulo 3%, k& > 0, each subsequence visits,
exactly once, every integer in [1, 3 — 1] that is coprime to 3.

In general, we can write the following (for simplicity we use simply = to mean equality
on the mod-1 circle):

o = 0,
1
1 = b-0 +rm = -
p
b
To = -
p
b2
Tp-1 = R
’ p
pr—1 p+1
xp = P —I_ rp - p2 9

$p2_1 = p2 5
pr(p=1) 1 1
vy = brl),  —pEetl
p p

and generally speaking,
(" = 1/(p—1)
ok
It is evident that upon the 1/p* perturbation, the x, commence a run of length (p*) =
p*~1(p—1) before the next perturbation, according to the following rule: The subsequence

Tk

p—l =

(@pr=1y. ooy Tph_y)

runs from
(akbo mod pk) /p"

10



through
(akbpk_l(p_l)_l mod pk) /p"
inclusive, where

pr—1
p—1

is coprime to p. One is aware that, in general, this subsequence will repeat — i.e., “walk
on itself” — unless bis a primitive root of p*. This phenomenon occurs, of course, because
the powers of b modulo p* have period 7, which period can be less than ¢(p*). Later we
shall use the symbol M, to be the multiplicity of these subsequence orbits; M}, = ¢(p*) /7.
For the moment we observe that the M) are bounded for all k, in fact M < p* always.

We need to argue that (x,,) is equidistributed. For this we shall require an important
lemma on exponential sums, which lemma we hereby paraphrase using our (b, p)-PRNG
nomenclature:

Lemma 4.2 (Korobov, Niederreiter) Given b > 2, gcd(b,p) = 1, and p an odd prime
(so that the order of b modulo p* is 73, of the text), assume positive integers k, i, J and
d = ged(H, p*) with J < 7, and d < 7 /71. Then

J
2miHbI [pF z (1 1 E)
]Z:;e ”d + log 1)

Proof. The lemma is a direct corollary of results found in [25], e.g. p. 167, Lemma 32

(which Lemma in fact involves more general moduli than p*—notably products of prime
powers), plus (earlier) results of Korobov [26]. The corollary also follows from somewhat
stronger variants for the moduli p* of our present interest in [30], pp. 1004-1008. A highly
readable proof of a similar result and an elementary description of Niederreiter’s seminal
work on the topic can be found in [24], pp. 107-110.

Lemma 4.2 speaks to the distribution of powers of 6 modulo prime powers. We are aware
that one could start from Lemma 4.2 and apply the Weyl criterion (Theorem 2.2(8)) to
establish equidistribution of the (x,). We shall prove a little more, starting from the
following lemma:

Lemma4.3 For a sequence (y,,) built as an ordered union ((y1, -, Yny )y (YN 415 » YN +No )5 * * *)
of subsequences of respective lengths N;, we have for N = Ny + Ny + -+ + Ny + J with
0<J <N,

k=1

N; J
Dy < E—D. —D
N = 2N Nl‘|‘N Js

where Dy, are the respective discrepancies of the subsequences and Dj is the discrepancy
of the partial sequence (yn,+.qtn,_,+7:J = 1,2,...,J).

11



Proof. This is proved simply, in [27], p. 115, Theorem 2.6.

Next we establish a lemma pertaining to the full subsequence of iterates occurring between
two successive perturbations.

Lemma 4.4 For a (b, p)-PRNG system, and k > 2a, the subsequence

(@ph=t1, .oy Tk _q),s

having ¢ = p(p*) = p"~1(p — 1) terms, has discrepancy satisfying

clogte.
VP
where ' is a constant depending only on (b, p) (and thus k-independent).

Remark. Such O(log? N/v/N) results including some results on best-possibility of such
bounds, have been achieved in brilliant fashion by Niederreiter (see [30], p. 1009 and [31],
pp. 169-170). Such results have historically been applied to generators of long period,
e.g. PRNGs that have long period for the given modulus. Evidently the only statistical
drawback for the PRNGs of present interest is that the discrepancy-bound constant can
be rather large (and, of course, we need eventually to chain our PRNG subsequences
together to obtain an overall discrepancy).

D@

Proof. By the Erdés—Turan Theorem 2.2(9), for any integer mj > 0 we have

1 mpg 1 Mk Tk—l ) ; i
D < Cl 4 e eQ?mhakb /p 7

where M}, is the multiplicity ¢ /7, that describes how many complete cycles the given
subsequence performs modulo p*. When h < 7,/7 = p*~2 the | - | term is, by Lemma
4.2, less than Cy(1 + log7;,)/+/7,. Choosing my = [p*/%] < pF~@ constrains the index
h properly, and we obtain D, < Cs(1/\/my + (log(my)log ,)/\/7)). Now we recall
that My, = /7 is bounded and observe that Ca/p < my < Us\/p, and the desired

discrepancy bound is met.

Finally we can address the issue of equidistribution of the (b, p)-PRNG system, by
contemplating the chain of subsequences that constitute the full generator:

Theorem 4.5 For the full (b, p)-PRNG sequence (x,,), the discrepancy for N > 1 satisfies
log? N

VN’
where C is independent of N, and accordingly, (x,) is equidistributed.

Proof. Tet N = ¢(p) +(p*) + - + c,o(pk_l) +J = p*' — 1 4+ J be the index into
the full (z,) sequence, where 0 < J < ¢(p¥), so that we have (k — 1) complete mod-p'

DN<C

12



subsequences, then J initial terms from a last subsequence having denominator p*. Also

let £ > 2a + 1 so that Lemma 4.4 is effective. By Lemma 4.3 and the Erdos-Turan
Dy < — 40 —
Z \/E h=1

Theorem 2.2(9) we have for any positive integer m
N N 5 TN ) ‘
i=2a+1 Velr)

Now the || term involves J exponential summands, so that the number of complete cycles
of ¥ modulo p* is |J/7x], so that this | - | term is bounded above by
17J
= 1 + log?
=] VA (14 1ot ).

2 k—1 21 2 7 J 1 ml
a ©(p') log” ¢ (p") o ( +Zg

l k
j : 3 J
27 zhakb /p

J

where again we have used the Korobov—Niederreiter Lemma 4.2. On the basis of the
relations p(p') = p'~t(p — 1) and 7, = 7, p"? (vecall k > 2a + 1) we have:

CsN < pk < N,
C5N2/k < @(pl) < CGNi/kv
C7N < 1 < CgN,

where the various C; here are k-and-:-independent, positive constants. Next, choose the
parameter m = [p*/2]. Now the desired discrepancy bound follows upon replacement of
all p*, @(p’), 7 terms with constants times powers of N. That (z,) is equidistributed is
a consequence of Theorem 2.2(12).

Now we can move to the main result

Theorem 4.6 For base b > 1 and odd prime p coprime to b, the number

1
Oéb7p = Z pn bpn

n>1

is b-normal.

Remark. When b is a primitive root of p and p||(6*~" — 1), it is easy to show that this
ap,, 18 b-dense (the (b, p)-PRNG sequence becomes progressively finer in an obvious way).

Proof. For a (b,p)-PRNG system the associated constant as in Theorem 3.1 is § =
k> 1/(p*b**™") and this is a rational multiple of our a;,. Theorem 2.2(7) finishes the
argument.

Corollary 4.7 The number
1

- Z n2n

n=3k>1

a3

is 2-normal.

13



It is natural to ask whether ¢y, is transcendental, which question we answer in the
positive with:

Theorem 4.8 The number o, for any integers b > 1,p > 2 is transcendental.
Remark. Though «;, has been introduced for (b, p)-PRNG systems with b > 1, gcd(b, p) =

1, p an odd prime, the transcendency result is valid for any integer pair (b, p) with p > 2
and b > 1.

Proof. The celebrated Roth theorem states [36] [13] that if |P/Q — «| < 1/Q**° admits
of infinitely many rational solutions P/Q) (i.e. if « is approximable to degree 2 + ¢ for
some € > 0), then « is transcendental. We show here that «y, is approximable to degree
p— 6. Fix a k and write

1
a, = PIQ+Y T

n>k

where ged(P, Q) = 1 with @ = p"b*". The sum over n gives
2
pYQ/P Y QF

Now p*log b+ klog p = log Q, so that p* < log Q/log b, and we can write

s, = P/Q| <

pkp < (logQ/log by’ = Qp(loglogQ—loglogb)/logQ‘

Thus for any fixed 6 > 0,

1 1
|ab’p B P/Q| < Qp(l—l—loglogb/logQ—loglogQ/logQ) < Qp—&’

for all sufficiently large k.

Can one efficiently obtain isolated digits of oy ,7 It turns out that a3, admits of an
individual digit-calculation algorithm, as was established for =, log2 and some others
in the original Bailey—Borwein—Plouffe (BBP) paper [2] — the same approach works for
the new, b-normal and transcendental constants. Indeed, for ¢y, the BBP algorithm is
extraordinarily rapid: the overall bit-complexity to resolve the n-th base-b digit of «y , is

O(log® nloglog n log log log n),

which can conveniently be thought of as O(n®). By comparison, the complexity for the
BBP scheme applied to fundamental constants such as = and log2 (in general, the con-
stants falling under the umbrella of Hypothesis A) is O(n'*®). As a specific example, in
only 2.8 seconds run time on a modern workstation the authors were able to calculate
binary bits of g3, beginning at position one googol (i.e. 10'%°). The googol-th binary
digit is 0; the first ten hexadecimal digits starting at this position are 22056896E7B. In
contrast, C. Percival’s recent resolution of the quadrillionth (10'*-th) binary bit of 7 is
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claimed to be the deepest computation in history for a 1-bit result [34], finding said bit
to be 0 but at the cost of over 10'® CPU clocks.

The PRNG we have presented takes a more erudite form if we only run through single
mod-p* cycles when the iterate denominator is p*. That would entail a perturbation

1

Fidritmtotr = Ev

with all other r; = 0. The associated real number in question is then:

1

Bop = 1%31pkbl-l-ﬂ(pk—l)/(p—l)7

and each of these 3, , is provably b-normal. One might wonder why this more complicated
form should be mentioned at all, what with the elegance of the ¢, forms. The answer
is, the PRNG is better, in the usual conventional senses. The discrepancy bound for this
PRNG can generally be lowered below the bound for the a3, (but only in the overall
constant), except that if b happens to be a primitive root of p, ap, = [, and there is
nothing new.

During this work it occurred to the authors that the uniform (0, 1) generator

Zn

yn:g_k’

where 2, is defined by the recursion z, = 2z, _; mod 3*, is of a class (namely, long-period
linear congruential generators) that is widely used in modern computing. One possible
weakness is that the numerator omits multiples of three; such a defect might be uncovered
in spectral tests, for example. The weakness can however be ameliorated to some degree
by modifying the y sequence as follows:

Zn — [2n/3]

oS T

in this way “contracting” the generator to render a uniformly spaced set of random
values—the working denominator is now the period of the generator. The authors are not
aware of statistical studies on “contracted” PRNGs of this form.

At this point one might look longingly at the b-normality of a;, and wonder how
difficult it is to relax the constraint on summation indices in 3, ¢ 1/(nb") in order finally
to resolve logarithmic sums. Some relaxations of the set S C Z* may be easier than
others. We conjecture that

1
p2r’
where p runs through the set of Artin primes (of which 2 is a primitive root), is 2-normal.
It is a celebrated fact that under the extended Riemann hypothesis (ERH) the Artin-

prime set is infinite, and in fact—this may be important—has positive density amongst
the primes. We make this conjecture not so much because of statistical evidence, but
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because we hope the fact of 2 being a primitive root for every index p might streamline
any analysis. Moreover, any connection at all between the ERH and the present theory
is automatically interesting.

With Theorem 4.6, we now have normal numbers defined with explicit algebra, as
opposed to “artificial” constructions. In this light, of some interest is the form appearing
in [25, Theorem 30, pg. 162], where it is proven that

_ 5 sy

bn

n>1

is b-normal for any “completely uniformly distributed” function f, meaning that for every
integer s > 1 the vectors (f(n), f(n+1),... f(n+s)) are, asn = 1,2,3,..., equidistributed
in the unit s-cube. (Korobov also cites a converse, that any b-normal number has such
an expansion with function f.) Moreover, Korobov gives an explicit function
fla) = Y e,
k=0

for which the number « above is therefore b-normal. Indeed this work is the closest to ours
that we have uncovered in the literature; witness that results of Korobov and Niederreiter
have figured strongly into our proofs.

It may be possible to extend some of these ideas to handle even the artificially con-
structed normal numbers described in Sections 1 and 6.

5. PRNGs leading to density and irrationality proofs

Independent of number theory and special primes, one could ask what is the statistical
behavior of truly random points chosen modulo 1; for example, what are the expected
gaps that work against uniform point density?

In view of Definition 2.1(4) and Theorem 2.2(11), it behooves us to ponder the expected
gap-maximum for random points: If N random (with uniform distribution) points are
placed in [0, 1), then the probability that the gap-maximum G/ exceeds x is known to be
22

11/=] /a7 4
Prob(Gy > ) = ( ,)(—1)]"'1(1 —ja)N!

J

i=1
The expectation E of the gap-maximum can be obtained by direct integration of this
distribution formula, to yield:

1
E(Gy) = W +1)+7)
where ¢ is the standard polygamma function I'V/T". Thus for large N we have
_ log N+y—1/2 1
log N
N
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This shows that whereas the mean gap is 1/N, the mean mazimum gap is essentially
(log N)/N. In this sense, which remains heuristic with an uncertain implication for our
problem, we expect a high-order cascaded PRNG to have gaps no larger than “about”
(log P)/P where P is the overall period of the PRNG.

It turns out that for very specialized PRNGs we can effect rigorous results on the
gap-maximum G . One such result is as follows:

Theorem 5.1. Let 1 = e < e3 < e3 < ... < e; be a set of pairwise coprime integers.
Consider the PRNG with any starting seed (sq,...,sg):

s 2 2
e (2 (2@1—1+262—1”‘26k—1))mOdl'

Then the generated sequence (x4) has period ejey--- e and for sufficiently large N we

have

Gy < 3/2U/2

Proof. Fach numerator 297% clearly has period ¢; modulo the respective denominator
2% — 1, so the period is the given product. The given bound on gaps can be established
by noting first that the behavior of the PRNG defined by

2h —1 2R 20k — 1

y(fz) = 261_1‘|’262_1‘|‘"'+26k_17

as each f; runs over its respective period interval [0, e; — 1], is very similar to the original
generator. In fact, the only difference is that this latter, y form has constant offset
> 1/(2% — 1) so that the maximum gap around the mod 1 circle is the same. Now
consider a point z € [0,1) and attempt construction of a set (f;) such that y(s) ~ 2, as
follows. Write a binary expansion of z in the (non-standard) form:

1
Z = Z QTn,
n=1
i.e., the b, denote the positions of the 1 bits of z. Now set f; = ¢; — b; for ¢ from k& down
to k — K + 1 inclusive. Using the following inequality chain for any real 0 < a < b:

1 a—1<a
b?

a4 <
b b b—1
it follows that we can find a PRNG value such that

9 K 1
||?J(fi) -2l < ‘_2%—1\41 —I_]Z_:QTk '

Attention to the fact that the e; are strictly increasing leads directly to the upper bound
3/2%/2) on the maximum gap for the y, and hence the x generator.
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Of course the maximum-gap theorem just exhibited is weaker than the statistical expec-
tation of the maximum gap, roughly (log F)/E where £ = €1 - - - e, but at least we finally
have a rigorously vanishing gap and therefore, as we shall see, some digit-density, hence
irrationality results.

Though the previous section reveals difficulties with the PRNG approach, there are
ways to apply these basic ideas to obtain irrationality proofs for certain numbers of the
form

0= %

7

1

for integers m; and n;. A first result is based on our rigorous PRNG gap bound, from
Theorem 5.1, as:

Theorem 5.2. Let 1 = ¢; < e; < ... be a strictly increasing set of integers that are
pairwise coprime. Let (d;) be a sequence of integers with the growth property:

k k
dk_|_1 > Hdz + H €;.
=1 =1

Then the number:

= 1
r = -
7 )
1 1
— + + ...

241 (201 — 1) 242(2%2 — 1)
is 2-dense and hence irrational.
Proof: Fix a k, define D =[]d;, £ = []e;, and for 0 < ¢ < E consider the fractional

part of a certain multiple of z:

4D e A -
2 =
e} = eyt et

where f; = 29tP=4 and error term |T| < 1/2°. By the Chinese remainder theorem,
we can find, in the stated range for ¢, a ¢ such that the PRNG values of Theorem 5.1
are attained. Thus the maximum gap between successive values of the sequence {2"x}
vanishes as k — o0, so the sequence is dense by Theorem 2.2(11) and desired results
follow.

Of course there should be an alternative means to establish such an irrationality result.
In fact, there are precedents arising from disparate lines of analysis. Consider what we
call the Erdos-Borwein number: The sum of the reciprocals of all Mersenne numbers,
namely:
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This still-mysterious number is known to be irrational, as shown by Erdés [19] with a clever
number-theoretical argument. More recently, P. Borwein [7] established the irrationality
of more general numbers 3 1/(¢" — r) when r # 0, using Pade approximant techniques.
Erdés also once showed that the sum of terms 1/(6,2%") is always irrational for any positive
integer sequence (b, ). Such binary series with reciprocal terms have indeed been studied
for decades.

The Erdos approach for the £ number can be sketched as follows. It is an attractive
combinatorial exercise to show that

1 < d(n)

=Yy =y

a=1b=1 n=1

where d(n) is the number of divisors of n (including 1 and n). To paraphrase the Erdés
method for our present context, consider a relevant fractional part:

{2"E} = (d(m;— D + d(sz—l— 2) + d(mQ:— 3) + .. ) mod 1

What Erdos showed is that one can choose any prescribed number of succesive integers
k+1,k+2,... k+ K such that their respective divisor counts d(k+1),d(k+2),...,d(k+K)
are respectively divisible by increasing powers 2,22,2% ... 2. and furthermore this can
be done such that the subsequent terms beyond the K-th of the above series for {2*E}
are not too large. In this way Erdos established that the binary expansion of F has

arbitrarily long strings of zeros. This proves irrationality (one also argues that infinitely
many 1’s appear, but this is not hard). We still do not know, however, whether £ is
2-dense. The primary difficulty is that the Erdos approach, which hinges on the idea that
if n be divisible by j distinct primes, each to the first power, then d(n) is divisible by 2/,
does not obviously generalize to the finding of arbitrary d values modulo arbitrary powers
of 2. Still, this historical foreshadowing is tantalizing and there may well be a way to
establish that the £ number is 2-dense.

As a computational matter, it is of interest that one can also combine the terms of £
to obtain an accelerated series:

<] 2m 4]
E= Y - T
Lt gmPgm

Furthermore, the £ number finds its way into complex analysis and the theory of the
Riemann zeta function. For example, by applying the identity (*(s) = 32,5, d(n)/n’®, one
can derive

_ 2
g _ 1~ loglog? i/ L'(s)¢ (S)dt,
log 2 27 Jr (log2)?

where R is the Riemann critical line s = 1/2 4 ¢t. In this sophisticated integral formula
we note the surprise appearance of the celebrated Fuler constant 4. Such machinations
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lead one to wonder whether 4 has a place of distinction within the present context. A
possibly relevant series is [4]

e s

If any one of our models is to apply, it would have to take into account the fairly slow

convergence of the j sum for large k. (After & = 1 the j-sum evidently approaches 1
from above.) Still, the explicit presence of binary powers and rational multipliers of said
powers suggests various lines of analysis. In particular, it is not unthinkable that the
J-sum above corresponds to some special dynamical map, in this way bringing the Euler
constant into a more general dynamical model.

It is of interest that a certain PRNG conjecture addresses directly the character of the
expansion of the Erdés-Borwein number.

Conjecture 5.3 The sequence given by the PRNG definition
d d d d mod k
2¢—1 2 -1
is equidistributed.

Remark One could also conjecture that the sequence in Conjecture 5.3 is merely dense,
which would lead to 2-density of E.

This conjecture leads immediately, along the lines of our previous theorems pertaining to
specially-constructed PRNGs, to:

Theorem 5.4. The Erdds-Borwein number £ is 2-normal iff Conjecture 5.3 holds.
Proof. For the PRNG of Conjecture 5.3, we have

1
zg=02'— )| E =Y ——] mod 1,
( a2 1)
so that
{za} = {{2'E} + {-E -1+ 14}},

where t; — 0. Thus {2?E} is equidistributed iff (z,,) is, by Theorem 2.2(10).

We believe that at least a weaker, density conjecture should be assailable via the kind
of technique exhibited in Theorem 5.1, whereby one proceeds constructively, establishing
density by forcing the indicated generator to approximate any given value in [0, 1).

P. Borwein has forwarded to us an interesting observation on a possible relation be-
tween the number F and the “prime-tuples” postulates, or the more general Hypothesis
H of Schinzel and Sierpinski. The idea is — and we shall be highly heuristic here — the
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fractional part d(m + 1)/2 + d(m + 2)/2* 4+ - - - might be quite tractable if, for example,
we have

m—+1 = pq,
m+2 = 2ps,
m-+n = npy,

at least up to some n = N. where the p; > N are all primes that appear in an appropriate
“constellation” that we generally expect to live very far out on the integer line. Note that
in the range of these n terms we have d(m + j) = 2d(j). Now if the tail sum beyond
d(m + N)/2" is somehow sufficiently small, we would have a good approximation

("B} ~ d(1)+d(2)/2+ - = 2E.

But this implies in turn that some iterate {2™ £} revisits the neighborhood of an earlier
iterate, namely {2F£}. It is not clear where such an argument—especially given the
heuristic aspect—should lead, but it may be possible to prove 2-density (i.e. all possible
finite bitstrings appear in £) on the basis of the prime k-tuples postulate. That connection
would of course be highly interesting. Along such lines, we do note that a result essentially
of the form: “The sequence ({2 FE}) contains a near-miss (in some appropriate sense)
with any given element of ({nF})” would lead to 2-density of F, because, of course, we
know E is irrational and thus ({n£}) is equidistributed.

6. Special numbers having “nonrandom” digits

This section is a tour of side results in regard to some special numbers. We shall
exhibit numbers that are b-dense but not b-normal, uncountable collections of numbers
that are neither b-dense nor b-normal, and so on. One reason to provide such a tour is
to dispel any belief that, because almost all numbers are absolutely normal, it should
be hard to use algebra (as opposed to artificial construction) to “point to” nonnormal
numbers. In fact it is not hard to do so.

First, though, let us revisit some of the artificially constructed normal numbers, with
a view to reasons why they are normal. We have mentioned the binary Champernowne,
which can also be written

= n

Cy = Z 9F (n)

n=1
where the indicated exponent is:

n

F(n) = n—l—ZUogsz.

k=1

Note that the growth of the exponent F(n) is slightly more than linear. It turns out that
if such an exponent grows too fast, then normality is ruined. More generally, there is the
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class of Erdés—Copeland numbers [14], formed by (we remind ourselves that the (-) nota-
tion means digits are concatenated, and here we concatenate the base-b representations)

a = 0.(a1)p(az)p---

where (a,) is any increasing integer sequence with a, = O(n'*¢), any € > 0. An example
of the class is

0.(2)3GHTADA3)AT) - 10,

where primes are simply concatenated. These numbers are known to be b-normal, and
they all can be written in the form 3 G(n)/bF(”) for appropriate numerator function ¢
and, again, slowly diverging exponent F'. We add in passing that the generalized Mahler
numbers (for any g, h > 1)

My(g) = 0.(g")(g" )s(g")s- -

are known at least to be irrational [32], [38], and it would be of interest to establish
perturbation sums in regard to such numbers. Incidentally, it is ironic that the some of
the methods for establishing irrationality of the M,(g) are used by us, below, to establish
nonnormality of certain forms.

We have promised to establish that

a = Z:n/Qn2

n>1

is 2-dense but not 2-normal. Indeed, in the n?-th binary position we have the value n,
?—(n—1)* > 1 + log, n, the numerator n at
bit position n? will not interfere (in the sense of carry) with any other numerator. One
may bury a given finite binary string in some sufficiently large integer n (we say buried
because a string 0000101, for example, would appear in such as n = 10000101), whence
said string appears in the expansion. Note that the divergence of the exponent n? is a key
to this argument that « is 2-dense. As for the lack of 2-normality, it is likewise evident
that almost all bits are 0’s.

Let is hereby consider faster growing exponents, to establish a more general result,
yielding a class of b-dense numbers none of which are b-normal. We start with a simple
but quite useful lemma.

and since for sufficiently large n we have n

Lemma 6.1 For polynomials P with nonnegative integer coefficients, deg P > 0, and for
any integer b > 1, the sequence

({log, P(n)} :n=1,2,3,...)
is dense in [0, 1).

Proof. For d = degP, let P(z) = ag2® + ... + ap. Then log, P(n) = log,ay +
d(logn)/logb + O(1/n). Since logn = 14+ 1/2+1/3 +... 4+ 1/n —~ 4+ O(1/n?) di-
verges with n but by vanishing increments, the sequence ({d(logn)/logb}) and therefore
the desired ({log, P(n)}) are both dense by Theorem 2.2(10).
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Now we consider numbers constructed via superposition of terms P(n)/b%0"), with a
growth condition on P, ():

Theorem 6.2 For polynomials P, () with nonnegative integer coefficients, deg ¢) > deg P >
0, the number
Pn)

2. 30

n>1

is b-dense but not b-normal.

Proof. The final statement about nonnormality is easy: Almost all of the base-b digits
are 0’s, because log, P(n) = o(Q(n) — Q(n — 1)). For the density agrument, we shall
show that for any r € (0,1) there exist integers Ny < Ny < ... and dy,ds,... with
Q(N;_1) < d; < Q(N;), such that

lim {p%a} = r.

J—00

This in turn implies that ({#a}) : d = 1,2,...}) is dense, hence a is b-dense. Now for
any ascending chain of N; with Ny sufficiently large, we can assign integers d; according
to

QN;) > d; = Q(N;) +log,r —log, P(N;) +0; > Q(N;-1)
where 0; € [0,1). Then
P(N;)/p°W)=di = 9y,
However, ({log, P(r)}) is dense, so we can find an ascending N;-chain such that lim8; = 0.

Since d; < Q(N;) we have

{bba} = (beﬂr—l—ZP(Nj—I—k)/bQ(NJJ”“)‘dﬂ) mod 1

k>0

and because the sum vanishes as j — oo, it follows that « is b-dense.

Consider the interesting function [27], p. 10:

sy = 3

The function f is reminiscent of a degenerate case of a generalized polylogarithm form—
that is why we encountered such a function during our past [3] and present work. Regard-
less of our current connections, the function and its variants have certainly been studied,

especially in regard to continued fractions [16] [17] [27] [8] [29] [5] [1] [17] [9], [10]. If one
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plots the f function over the interval & € [0, 1), one sees a brand of “devil’s staircase,” a

curve with infinitely many discontinuities, with vertical-step sizes occurring in a fractal
pattern. There are so many other interesting features of f that it is efficient to give an-
other collective theorem. Proofs of the harder parts can be found in the aforementioned
references.

Theorem 6.3 (Collection) For the “devil’s staircase” function f defined above, with
the argument = € (0,1),

1.
2.

3.

f 1s monotone increasing.
f is continuous at every irrational x, but discontinuous at every rational x.

For rational = p/q, lowest terms, we have

| o
flae) = gq_1+ﬂ;2Lm/xJ

but when x is irrational we have the same formula without the 1/(2? — 1) leading
term (as if to say ¢ — o).

For irrational @ = [ay,aq,as,...], a simple continued fraction with convergents
(pn/qn), we have:

fle) = [Ar,As As, ...

where the elements A,, are:

2anqn—1 _ 1

A — 2qn—2
" Qqn—l — 1 )

Moreover, if (P,/Q,) denote the convergents to f(x), we have
Q, = 2 1.

f(x) is irrational iff x is.

If « is irrational then f(x) is transcendental.

. f(x) is never 2-dense and never 2-normal.

The range R = f([0,1)) is a null set (measure zero).

The density of 1’s in the binary expansion of f(z) is x itself; accordingly, f~', the
inverse function on the range R, is just 1’s density.

24



Some commentary about this fascinating function f is in order. We see now how f can
be strictly increasing, yet manage to “completely miss” 2-dense (and hence 2-normal)
values: Indeed, the discontinuities of f are dense. The notion that the range R be a null
set is surprising, yet follows immediately from the fact that almost all x have 1’s density
equal to 1/2. The beautiful continued fraction result allows extremely rapid computation
of f values. The fraction form is exemplified by the following evaluation, where = is the
reciprocal of the golden mean and the Fibonacci numbers are denoted F;:

= 1 (1)

[2F0 2F oF2 ]

e

It is the superexponential growth of the convergents to a typical f(x) that has enabled
transcendency proofs as in Theorem 6.2(6).
An interesting question is whether (or when) a companion function

g(l’)ZiM

n=1 2n
can attain 2-normal values. Evidently

gle) = 2z - [(z),

and, given the established nonrandom behavior of the bits of f(x) for any x, one should
be able to establish a correlation between normality of & and normality of g(x). One
reason why this question is interesting is that ¢ is constructed from “random” real values
{nx} (we know these are equidistributed) placed at unique bit positions. Still, we did
look numerically at a specific irrational argument, namely

1
o= ZQn(n—I—l)/Z

n>1

and noted that ¢g(z) almost certainly is not 2-normal. For instance, in the first 66,420
binary digits of g(x), the string ’010010” occurs 3034 times, while many other length-6
strings do not occur at all.

7. Conclusions and open problems

Finally, we give a sampling of open problems pertaining to this interdisciplinary effort:

e We have shown that for (b, p)-PRNG systems, the numbers oy, are each b-normal.
What about e-normality of such a number for ¢ not a rational power of b7
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e What techniques might allow is to relax the constraint of rapid growth n = p* in our
sums »_ 1/(nb"), in order to approach the spectacular goal of resolving the suspected
b-normality of log(b/(b—1))? One promising approach is to analyze discrepancy for
relatively short parts of PRNG cycles. In [25], p. 171, [26] there appear exponential
sum bounds for relatively short indices J into the last cycle. It could be that such
theorems can be used to slow the growth of the summation index n.

o [t is clear that the discrepancy bound given in Theorem 4.5, based in turn on the
Korobov—Niederreiter Lemma 4.2, is “overkill,” in the sense that we only need show
Dy = o(N) to achieve a normality proof. Does this mean that the numbers oz,
are somehow “especially normal”? For such a question one would perhaps need
extra variance statistics of a normal number; i.e., some measures beyond the “fair
frequency” of digit strings.

o We have obtained rigorous results for PRNGs that either have a certain synchro-
nization, or have extremely small “tails.” What techniques would strike at the in-
termediate scenario which, for better or worse, is typical for fundamental constants;
e.g., the constants falling under the umbrella of Hypothesis A7

e With our (b, p)-PRNG systems we have established a countable infinity of explicit
b-normal numbers. What will it take to exhibit an uncountable, explicit collection?

o What are the properties of “contracted” PRNGs, as exemplified in Section 47

e Does polynomial-time (in logn) resolution of the n-th digit for our a4, constants
give rise to some kind of “trap-door” function, as is relevant in cryptographic ap-
plications? The idea here is that it is so very easy to find a given digit even though
the digits are “random.” (As in: Multiplication of n-digit numbers takes polynomial
time, yet factoring into multiples is evidently very much harder.)
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