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Abstract

Pursuant to the authors' previous chaotic-dynamical model for random digits of fun-

damental constants [3], we investigate a complementary, statistical picture in which pseu-

dorandom number generators (PRNGs) are central. Some rigorous results such as the

following are achieved: Whereas the fundamental constant log 2 =
P

n2Z+ 1=(n2n) is not
yet known to be 2-normal (i.e. normal to base 2), we are able to establish b-normality

(and transcendency) for constants of the form
P
1=(nbn) but with the index n constrained

to run over certain subsets of Z+. In this way we demonstrate, for example, that the con-

stant �2;3 =
P

n=3;32;33;::: 1=(n2
n) is 2-normal. The constants share with �; log 2 and others

the property that isolated digits can be directly calculated, but for the new class such

computation is extraordinarily rapid. For example, we �nd that the googol-th (i.e. 10100-

th) binary bit of �2;3 is 0. We also present a collection of other results | such as density

results and irrationality proofs based on PRNG ideas | for various special numbers.
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1. Introduction

We call a real number b-normal if, qualitatively speaking, its base-b digits are \truly
random." For example, in the decimal expansion of a number that is 10-normal, the digit

7 must appear 1=10 of the time, the string 783 must appear 1=1000 of the time, and so

on. It is remarkable that in spite of the elegance of the classical notion of normality,

and the sobering fact that almost all real numbers are absolutely normal (meaning b-
normal for every b = 2; 3; : : :), proofs of normality for fundamental constants such as

log 2; �; �(3) and
p
2 remain elusive. In [3] we proposed a general \Hypothesis A" that

connects normality theory with a certain aspect of chaotic dynamics. In a subsequent

work, J. Lagarias [28] provided interesting viewpoints and analyses on the dynamical

concepts.

In the present paper we adopt a kind of complementary viewpoint, focusing upon pseu-

dorandom number generators (PRNGs), with relevant analyses of these PRNGs carried

out via exponential-sum and other number-theoretical techniques. One example of success

along this pathway is as follows: Whereas the possible b-normality of the fundamental

constant

log 2 =
X
n2Z+

1

n2n

remains to this day unresolved (for any b), we prove that for certain subsets S � Z+ and

bases b, the sum

X
n2S

1

nbn

is indeed b-normal (and transcendental). An attractive special case is a number we denote

�2;3, obtained simply by restricting the indices in the log 2 series de�nition to run over

powers of 3:

�2;3 =
X

n=3k>1

1

n2n
=

1X
k=1

1

3k23
k

= 0:0418836808315029850712528986245716824260967584654857 : : :10

= 0:0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B: : :16 ;

which number we now know to be 2-normal (and thus 16-normal as well; see Theorem

2.2(6)). It is of interest that until now, explicit b-normal numbers have generally been

what one might call \arti�cial," as in the case of the 2-normal, binary Champernowne

constant:

C2 = 0:(1)(10)(11)(100)(101)(110)(111) � � �2 ;

with the (�) notation meaning the expansion is constructed via concatenation of registers.

Now with numbers such as �2;3 we have b-normal numbers that are \natural" in the sense

that they can be described via some kind of analytic formulation. Such talk is of course

heuristic; the rigor comes in the theorems of the following sections.
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In addition to the normality theorems applicable to the restricted sums mentioned

above, we present a collection of additional results on irrationality and b-density (see

ensuing de�nitions). These side results have arisen during our research into the PRNG

connection.

2. Nomenclature and fundamentals

We �rst give some necessary nomenclature relevant to base-b expansions. For a real

number � 2 [0; 1) we shall assume uniqueness of base-b digits, b an integer � 2; i.e.

� = 0:b1b2 � � � with each bj 2 [0; b�1], with a certain termination rule to avoid in�nite tails

of digit values b�1. One way to state the rule is simply to de�ne bj = bbj�c; another way
is to convert a trailing tail of consecutive digits of value b�1, as in 0:4999 � � � ! 0:5000 � � �
for base b = 10. Next, denote by f�g, or � mod 1, the fractional part of �, and denote

by jj�jj the closer of the absolute distances of � mod 1 to the interval endpoints 0; 1; i.e.
jj�jj = min(f�g; 1�f�g). Denote by (�n) the ordered sequence of elements �0; �1; : : :. Of
interest will be sequences (�n) such that (f�ng) is equidistributed in [0; 1), meaning that

any subinterval [u; v) � [0; 1) is visited by f�ng for a (properly de�ned) limiting fraction

(v � u) of the n indices; i.e., the members of the sequence fall in a \fair" manner. We

sometimes consider a weaker condition that (fang) be merely dense in [0; 1), noting that
equidistributed implies dense.

Armed with the above nomenclature, we paraphrase from [3] and references [27] [21]

[33] [25] in the form of a collective de�nition:

De�nition 2.1 (Collection) The following pertain to real numbers � and sequences of

real numbers (�n 2 [0; 1) : n = 0; 1; 2; : : :). For any base b = 2; 3; 4 : : : we assume, as

enunciated above, a unique base-b expansion of whatever real number is in question.

1. � is said to be b-dense i� in the base-b expansion of � every possible �nite string of

consecutive digits appears.

2. � is said to be b-normal i� in the base-b expansion of � every string of k base-b digits
appears with (well-de�ned) limiting frequency 1=bk. A number that is b-normal for

every b = 2; 3; 4; : : : is said to be absolutely normal. (This de�nition of normality

di�ers from, but is provably equivalent to, other historical de�nitions [21] [33].)

3. The discrepancy of (�n), essentially a measure of unevenness of the distribution in

[0; 1) of the �rst N sequence elements, is de�ned (when the sequence has at least N
elements)

DN = sup
0�a<b<1

�����#(n < N : �n 2 [a; b))

N
� (b� a)

����� :

4. The gap-maximum of (�n), the largest gap \around the mod-1 circle" of the �rst N
sequence elements, is de�ned (when the sequence has at least N elements)

GN = max
k=0;:::;N�1

jj�(k+1) modN � �k mod N jj;
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where (�n) is a sorted (either in decreasing or increasing order) version of the �rst

N elements of (�n)

On the basis of such de�nition we next give a collection of known results in regard to

b-dense and b-normal numbers:

Theorem 2.2 (Collection) In the following we consider real numbers and sequences as

in De�nition 2.1. For any base b = 2; 3; 4 : : : we assume, as enunciated above, a unique

base-b expansion of whatever number in question.

1. If � is b-normal then � is b-dense,

Proof. If every �nite string appears with well-de�ned, fair frequency, then it

appears perforce.

2. If, for some b, � is b-dense then � is irrational.

Proof. The base-b expansion of any rational is ultimately periodic, which means

some �nite digit strings never appear.

3. Almost all real numbers in [0; 1) are absolutely normal (the set of non-absolutely-

normal numbers is null).

Proof. See [27], p. 71, Corollary 8.2, [21].

4. � is b-dense i� the sequence (fbn�g) is dense.

Proof. See [3].

5. � is b-normal i� the sequence (fbn�g) is equidistributed.

Proof. See [27], p. 70, Theorem 8.1.

6. Let m 6= k. Then � is bk-normal i� � is bm-normal.

Proof. See [27], p. 72, Theorem 8.2.

7. Let q; r be rational, q 6= 0. If � is b-normal then so is q� + r, while if c = bq is an
integer then � is also c-normal.

Proof. For the b-normality of q�, see [27], p. 77, Exercise 8.9. For the additive

(+r) part, see end of the present section. For the c-normality see [27], p. 77, Exercise

8.5.

8. (Weyl criterion) A sequence (f�ng) is equidistributed i� for every integer h 6= 0

N�1X
n=0

e2�ih�n = o(N):

Proof. See [27], p. 7, Theorem 2.1.
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9. (Erd}os{Turan discrepancy bound) There exists an absolute constant C such that

for any positive integer m the discrepancy of any sequence (f�ng) satis�es (again,
it is assumed that the sequence has at least N elements):

DN < C

 
1

m
+

mX
h=1

1

h

����� 1N
N�1X
n=0

e2�ih�n
�����
!
:

Proof. See [27], pp. 112-113, where an even stronger Theorem 2.5 is given.

10. Assume (xn) is equidistributed (dense). If yn ! c, where c is constant, then (fxn+
yng) is likewise equidistributed (dense). Also, for any nonzero integer d, (fdxng) is
equidistributed (dense).

Proof. For normality (density) of (fxn + yng) see [3] [27], Exercise 2.11 (one

may start with the observation that (xn + yn) = (xn + c) + (yn � c) and (fxn + cg)
is equidistributed i� (xn) is). The equidistribution of (fdxng) follows immediately

from parts 5,8 above. As for density of (fdxng), one has fdxng = fdfxngg for any
integer d, and the density property is invariant under any dilation of the mod-1

circle, by any real number of magnitude � 1.

11. Given a number �, de�ne the sequence (�n) = (fbn�g). Then � is b-dense i�

lim
N!1

GN = 0:

Proof. The only-if is immediate. Assume, then, the vanishing limit, in which case

for any � > 0 and any point in [0; 1) some sequence member can be found to lie

within �=2 of said point, hence we have density.

12. Assume � and the corresponding sequence of the previous item. Then � is b-normal

i�

lim
N!1

DN = 0:

Proof. See [27], p. 89, Theorem 1.1.

Some of the results in the above collection are simple; some are diÆcult; the aforemen-

tioned references reveal the diÆculty spectrum. This collective Theorem 2.3 is a starting

point for many interdisciplinary directions. Of special interest in the present treatment

is the interplay between normality and equidistribution.

We focus �rst on the celebrated Weyl result, Theorem 2.3(8). Observe the little-

o notation, essentially saying that the relevant complex vectors will on average exhibit

signi�cant cancellation. An immediate textbook application of the Weyl theorem is to

show that for any irrational �, the sequence (fn�g) is equidistributed. Such elementary
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forays are of little help in normality studies, because we need to contemplate not multiples

n� but the rapidly diverging constructs bn�.
We shall be able to put the Weyl theorem to some use in the present treatment. For

the moment, it is instructive to look at one nontrivial implication of Theorem 2.3(8).

We selected the following example application of the Weyl sum to foreshadow several

important elements of our eventual analyses. With Theorem 2.3(5,6,8) we can prove part

of Theorem 2.3(7), namely: If � is b-normal and r is rational then �+ r is b-normal. Let

r = p=q in lowest terms. The sequence of integers (bm mod q) is eventually periodic, say
with period T . Thus for some �xed integer c and any integer n we have bnT mod q = c.
Next we develop an exponential sum, assuming nonzero h:

S =
N�1X
n=0

e2�ihb
nT (�+p=q) = e2�ihcp=q

N�1X
n=0

e2�ihb
nT

�:

Now a chain of logic �nishes the argument: � is b-normal so it is also bT -normal by

Theorem 2.3(6). But this implies S = e2�ihcp=qo(N) = o(N) so that �+ p=q is bT -normal,

and so by Theorem 2.3(6) is thus b-normal.

3. Pseudorandom number generators (PRNGs)

We consider PRNGs under the iteration

xn = (bxn�1 + rn) mod 1;

which is a familiar congruential form, except that the perturbation sequence rn is not

yet speci�ed (in a conventional linear-congruential PRNG this perturbation is constant).

Much of the present work is motivated by the following hypothesis from [3].

Hypothesis A (Bailey{Crandall) If the perturbation rn = p(n)=q(n), a non-singular

rational-polynomial function with deg q > deg p � 0, then (xn) is either equidistributed
or has a �nite attractor.

It is unknown whether this hypothesis be true, however a motivation is this: The normality

of many fundamental constants believed to be normal would follow from Hypothesis A. Let

us now posit an unconditional theorem that leads to both conditional and unconditional

normality results:

Theorem 3.1 (Unconditional) Associate a real number

� =
1X
n=1

rn
bn

where limn!1 rn = c, a constant, with a PRNG sequence (xn) starting x0 = 0 and

iterating

xn = (bxn�1 + rn) mod 1:

Then (xn) is equidistributed (dense) i� � is b-normal (b-dense).
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Proof. Write

bd� � xd =
1X
n=1

bd�nrn � (bd�1r1 + bd�2r2 + � � �+ rd)

=
rd+1
b

+
rd+2
b2

+ � � � ! c0;

with c0 being a constant. Therefore by Theorem 2.2(10) it follows that � is b-normal. Now

assume b-normality. Then (xd) is the sequence (fbd�g) plus a sequence that approaches

constant, and again by Theorem 2.2(10) (xd) is equidistributed (dense) i� � is b-normal

(dense)..

In our previous work [3] this kind of unconditional theorem led to the following (condi-

tional) result:

Theorem 3.2 (Conditional) On Hypothesis A, each of the constants

�; log 2; �(3)

is 2-normal. Also, on Hypothesis A, if �(5) be irrational then it likewise is 2-normal.

Theorem 3.2 works, of course, because the indicated fundamental constants admit of

polylogarithm-like expansions of the form
P
rnb

�n where rn is rational-polynomial. The

canonical example is

log 2 =
1X
n=1

1

n2n

and 2-normality of log 2 comes down to the question of whether (for x0 = 0)

xn = (2xn�1 +
1

n
) mod 1

gives rise to an equidistributed (xn). The main results of the present paper will be to

establish equidistribution for generators reminiscent of, but not quite the same as, this

one for log 2.

With a view to ultimate achievement of normality results, let us take a brief tour of

some other (not rational-polynomial) perturbation functions. The iteration

xn = (2xn�1 +
n

2n
2�n

) mod 1

is associated with the constant

� =
X
n�1

n

2n
2
;

which is 2-dense but not 2-normal, as we establish later. Another rather peculiar pertur-

bation, for base b = 4, is

rn =
1

(2n)!

4n + 1

4n + 2
:
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If the associated PRNG is equidistributed, then 1=
p
e is 2-normal. Likewise, and again

for base b = 4, a result of equidistribution for a perturbation

rn =
(2n � 3)!!

n!
=

(2n � 3)(2n � 5) � � � 3 � 1
n(n� 1)(n � 2) � � � 2 � 1

would prove that
p
2 is 4-normal, hence 2-normal. It might have seemed on the face of it

that the decay rate of the perturbation rn has something to do with normality. But the

conditional results on Hypothesis A involve only polynomial-decay perturbations, while

the statements immediately above involve rapid, factorial decay. On the other hand there

are very slowly-decaying perturbation functions for which one still embraces the likelihood

of normality. For example, the mysterious Euler constant 
 can be associated with the

base b = 2 and perturbation function rn that decays like n�1=2 (see Section 5 and [3])..

In a spirit of statistical investigation let us revisit once again the canonical case of

the number � = log 2 and base b = 2. For the purpose of discussion we write out for

d = 1; 2; 3; : : : an iterate as assembled from d explicit terms:

xd =

 
2d�1 mod 1

1
+
2d�2 mod 2

2
+
2d�3 mod 3

3
+ : : :+

2

d� 1
+
1

d

!
mod 1:

and remind ourselves that

2d log 2 = xd + td;

where td is a \tail" term that vanishes in the limit, but is also a kind of source for

subsequent generator iterates. (Note that the �rst term always vanishes modulo 1; we

include that term for clarity.) One can think of such a PRNG as a \cascaded" random

number generator, in which distinct generators (2d�m mod m)=m are added together, with

the number of moduli m steadily diverging.

There are diÆcult aspects of the PRNG analysis for log 2. First, the theory of cascaded

PRNGs appears diÆcult; even the class of generators with �xed numbers of summands are

not completely understood. Second, even if we succeeded in some form of equidistribution

theorem for cascaded generators, we still have the problem that the tail td is to be added
into the �nal segment of the generator that has just been started with its power-of-two

numerators.

These diÆculties may be insurmountable. Nonetheless, there are two separate ap-

proaches to altering the log 2 PRNG such that density and normality results accrue.

These separate modi�cations are:

� Arrange for some kind of synchronization, in which iterates change number-theoretical

character on the basis of a \kicking" pertubation that emerges only at certain iter-

ates.

� Arrange somehow for the tail td to be so very small that meaningful statistical

properties of the �rst d + d0 generator terms are realized before td is signi�cantly

magni�ed via d0 multiplies by b.
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We shall be able to apply both of these qualitative alterations. For the �rst case

(kicking/synchronization) we shall �nally achieve normality proofs. For the second kind

of alteration (small tail) we shall be able to e�ect some proofs on density and irrationality.

4. PRNGs admitting of normality proofs

Herein we exhibit a class of generators|we shall call them (b; p)-PRNG systems, for

which normality proofs can be achieved, due to the special synchronization such generators

enjoy. We begin with some necessary nomenclature (we are indebted to C. Pomerance for

his expertise, ideas and helpful communications on nontrivial arithmetic modulo prime

powers).

De�nition 4.1 We de�ne a (b; p)-PRNG system, for base b � 2 and odd prime p coprime

to b, as the sequence of iterates de�ned x0 = 0 and

xn = (bxn�1 + rn) mod 1;

where the perturbation is given by

rpk�1 =
1

pk

for k � 1, with all other ri = 0.

Remark 1. Just knowing the pair (b; p) determines the PRNG and its properties.

Consider the parameter a, de�ned by pajj(b�1 � 1) with �1 being the order of b modulo p.
It is known that the order, then, of b modulo pk is given by

�k = �1p
max(0;k�a):

For example, for b = 2 and p = 7 we have 23 � 1 = 7, so �1 = 3; a = 1 and the order of 2

modulo 7k is thus �k = 3 � 7k�1. For b = 2 again, and a Wieferich prime such as p = 1093

we have �1 = 364 and p2jj(2364 � 1), so in this case a = 2, whence for k > 1 we have

�k = 364 � 1093k�2. (Thus for example the order of 2 modulo 10932 is also 364.)

Remark 2. One could attempt to expand the (b; p)-PRNG de�nition to include the

even-modulus case pk = 2k, with odd b � 3, in which case the rules run like so: If 2kj(b�1)

then the order is �k = 1, else if 2kj(b2�1) then �k = 2, else de�ne a by 2ajj(b2�1), whence

the order is �k = 21+k�a. One expects therefore that normality results would accrue for

a (b; 2)-PRNG system, odd b � 3. However we do not travel this path in the present

treatment; for one thing some of the lemmas from the literature are geared toward odd

prime powers, so that more details would be required to include p = 2 systems.

The perturbation rn for a (b; p)-PRNG system is thus of the \kicking" variety; happening
inde�nitely, but not on every iteration, and in fact, happening progressively rarely. Be-
tween the \kicks," iterates of the sequence are, in e�ect, repetitions of a certain type of

9



normalized linear congruential PRNG. This is best seen by examining a speci�c example.
Consider successive iterates of the (2; 3)-PRNG system, whose iterates run like so:

(x0; x1; : : : ; x26; : : :) = (0;
1

3
;
2

3
;
4

9
;
8

9
;
7

9
;
5

9
;
1

9
;
2

9
;

13

27
;
26

27
;
25

27
;
23

27
;
19

27
;
11

27
;
22

27
;
17

27
;

7

27
;
14

27
;

1

27
;

2

27
;

4

27
;

8

27
;
16

27
;

5

27
;
10

27
;
20

27
;

40

81
; � � �)

A pattern is clear from the above: The entire sequence is merely (after the initial 0)

a concatenation of subsequences of respective lengths 2 � 3k�1, for k = 1; 2; : : :. Each

subsequence is the complete period of a certain linear congruential PRNG normalized

by 3k. Note that since 2 is a primitive root modulo 3k; k > 0, each subsequence visits,

exactly once, every integer in [1; 3k � 1] that is coprime to 3.

In general, we can write the following (for simplicity we use simply� to mean equality

on the mod-1 circle):

x0 � 0;

x1 � b � 0 + r1 �
1

p
;

x2 �
b

p
;

: : : ;

xp�1 �
bp�2

p
;

xp �
bp�1

p
+ rp �

p+ 1

p2
;

: : : ;

xp2�1 �
bp

2�p�1(p + 1)

p2
;

xp2 �
bp(p�1)(p + 1)

p2
+ rp2 =

p2 + p+ 1

p3
;

: : : ;

and generally speaking,

xpk�1 �
(pk � 1)=(p � 1)

pk
:

It is evident that upon the 1=pk perturbation, the xn commence a run of length '(pk) =
pk�1(p�1) before the next perturbation, according to the following rule: The subsequence

(xpk�1; : : : ; xpk�1)

runs from�
akb

0 mod pk
�
=pk
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through�
akb

p
k�1(p�1)�1 mod pk

�
=pk

inclusive, where

ak =
pk � 1

p � 1

is coprime to p. One is aware that, in general, this subsequence will repeat | i.e., \walk

on itself" | unless b is a primitive root of pk. This phenomenon occurs, of course, because

the powers of b modulo pk have period �k which period can be less than '(pk). Later we
shall use the symbolMk to be the multiplicity of these subsequence orbits;Mk = '(pk)=�k.
For the moment we observe that the Mk are bounded for all k, in fact Mk < pa always.

We need to argue that (xn) is equidistributed. For this we shall require an important

lemma on exponential sums, which lemma we hereby paraphrase using our (b; p)-PRNG
nomenclature:

Lemma 4.2 (Korobov, Niederreiter) Given b � 2; gcd(b; p) = 1, and p an odd prime

(so that the order of b modulo pk is �k of the text), assume positive integers k;H; J and

d = gcd(H; pk) with J � �k and d < �k=�1. Then������
JX
j=1

e2�iHbj=pk

������ <

r
�k
d

�
1 + log

�k
d

�
:

Proof. The lemma is a direct corollary of results found in [25], e.g. p. 167, Lemma 32

(which Lemma in fact involves more general moduli than pk|notably products of prime

powers), plus (earlier) results of Korobov [26]. The corollary also follows from somewhat

stronger variants for the moduli pk of our present interest in [30], pp. 1004-1008. A highly

readable proof of a similar result and an elementary description of Niederreiter's seminal

work on the topic can be found in [24], pp. 107-110.

Lemma 4.2 speaks to the distribution of powers of b modulo prime powers. We are aware

that one could start from Lemma 4.2 and apply the Weyl criterion (Theorem 2.2(8)) to

establish equidistribution of the (xn). We shall prove a little more, starting from the

following lemma:

Lemma4.3 For a sequence (yn) built as an ordered union ((y1; � � � ; yN1
); (yN1+1; � � � ; yN1+N2

); � � �)
of subsequences of respective lengths Ni, we have for N = N1+N2+ � � �+Nk�1+ J with

0 � J < Nk

DN �
k�1X
i=1

Ni

N
DNi

+
J

N
DJ ;

where DNi
are the respective discrepancies of the subsequences and DJ is the discrepancy

of the partial sequence (yN1+���+Nk�1+j : j = 1; 2; : : : ; J).
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Proof. This is proved simply, in [27], p. 115, Theorem 2.6.

Next we establish a lemma pertaining to the full subsequence of iterates occurring between

two successive perturbations.

Lemma 4.4 For a (b; p)-PRNG system, and k > 2a, the subsequence

(xpk�1; : : : ; xpk�1);

having ' = '(pk) = pk�1(p� 1) terms, has discrepancy satisfying

D' < C
log2 '
p
'
;

where C is a constant depending only on (b; p) (and thus k-independent).

Remark. Such O(log2N=
p
N) results including some results on best-possibility of such

bounds, have been achieved in brilliant fashion by Niederreiter (see [30], p. 1009 and [31],

pp. 169-170). Such results have historically been applied to generators of long period,

e.g. PRNGs that have long period for the given modulus. Evidently the only statistical

drawback for the PRNGs of present interest is that the discrepancy-bound constant can

be rather large (and, of course, we need eventually to chain our PRNG subsequences

together to obtain an overall discrepancy).

Proof. By the Erd}os{Turan Theorem 2.2(9), for any integer mk > 0 we have

D' < C1

0
@ 1

mk

+
mkX
h=1

1

h

������
Mk

'

�k�1X
j=0

e2�ihakb
j
=p

k

������
1
A ;

where Mk is the multiplicity '=�k that describes how many complete cycles the given

subsequence performs modulo pk. When h < �k=�1 = pk�a the j � j term is, by Lemma

4.2, less than C2(1 + log �k)=
p
�
k
. Choosing mk = bpk=2c < pk�a constrains the index

h properly, and we obtain D' < C3(1=
p
mk + (log(mk) log �k)=

p
�
k
). Now we recall

that Mk = '=�k is bounded and observe that C4
p
' < mk < C5

p
', and the desired

discrepancy bound is met.

Finally we can address the issue of equidistribution of the (b; p)-PRNG system, by

contemplating the chain of subsequences that constitute the full generator:

Theorem 4.5 For the full (b; p)-PRNG sequence (xn), the discrepancy for N > 1 satis�es

DN < C
log2Np

N
;

where C is independent of N , and accordingly, (xn) is equidistributed.

Proof. Let N = '(p) + '(p2) + � � � + '(pk�1) + J = pk�1 � 1 + J be the index into

the full (xn) sequence, where 0 < J < '(pk), so that we have (k � 1) complete mod-pi

12



subsequences, then J initial terms from a last subsequence having denominator pk. Also
let k > 2a + 1 so that Lemma 4.4 is e�ective. By Lemma 4.3 and the Erd}os{Turan

Theorem 2.2(9) we have for any positive integer m

DN <
2a

N
+ C1

k�1X
i=2a+1

'(pi)

N

log2 '(pi)q
'(pi)

+ C2

J

N

0
@ 1
p
m

+
mX
h=1

1

h

������
1

J

JX
j=1

e2�ihakb
j
=p

k

������
1
A :

Now the j�j term involves J exponential summands, so that the number of complete cycles

of bj modulo pk is bJ=�kc, so that this j � j term is bounded above by

1

J

�
J

�k

�p
�k
�
1 + log2 �k

�
;

where again we have used the Korobov{Niederreiter Lemma 4.2. On the basis of the

relations '(pi) = pi�1(p� 1) and �k = �1p
k�a (recall k > 2a+ 1) we have:

C3N < pk < N;

C5N
i=k < '(pi) < C6N

i=k;

C7N < �k < C8N;

where the various Cj here are k-and-i-independent, positive constants. Next, choose the
parameter m = bpk=2c. Now the desired discrepancy bound follows upon replacement of

all pk; '(pi); �k terms with constants times powers of N . That (xn) is equidistributed is

a consequence of Theorem 2.2(12).

Now we can move to the main result

Theorem 4.6 For base b > 1 and odd prime p coprime to b, the number

�b;p =
X
n�1

1

pnbpn

is b-normal.

Remark. When b is a primitive root of p and pjj(bp�1 � 1), it is easy to show that this

�b;p is b-dense (the (b; p)-PRNG sequence becomes progressively �ner in an obvious way).

Proof. For a (b; p)-PRNG system the associated constant as in Theorem 3.1 is � =P
k�1 1=(p

kbp
k�1

) and this is a rational multiple of our �b;p. Theorem 2.2(7) �nishes the

argument.

Corollary 4.7 The number

�2;3 =
X

n=3k>1

1

n2n

is 2-normal.
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It is natural to ask whether �b;p is transcendental, which question we answer in the

positive with:

Theorem 4.8 The number �b;p for any integers b > 1; p > 2 is transcendental.

Remark. Though �b;p has been introduced for (b; p)-PRNG systemswith b > 1; gcd(b; p) =
1, p an odd prime, the transcendency result is valid for any integer pair (b; p) with p > 2

and b > 1.

Proof. The celebrated Roth theorem states [36] [13] that if jP=Q��j < 1=Q2+� admits

of in�nitely many rational solutions P=Q (i.e. if � is approximable to degree 2 + � for
some � > 0), then � is transcendental. We show here that �b;p is approximable to degree

p � Æ. Fix a k and write

�b;p = P=Q+
X
n>k

1

pnbpn
;

where gcd(P;Q) = 1 with Q = pkbp
k

. The sum over n gives

j�b;p � P=Qj <
2

pk+1(Q=pk)p
<

pkp

Qp
:

Now pk log b+ k log p = logQ, so that pk < logQ= log b, and we can write

pkp < (logQ= log b)p = Qp(log logQ�log log b)= logQ:

Thus for any �xed Æ > 0,

j�b;p � P=Qj <
1

Qp(1+loglog b= logQ�log logQ= logQ)
<

1

Qp�Æ
;

for all suÆciently large k.

Can one eÆciently obtain isolated digits of �b;p? It turns out that �b;p admits of an

individual digit-calculation algorithm, as was established for �; log 2 and some others

in the original Bailey{Borwein{Plou�e (BBP) paper [2] | the same approach works for

the new, b-normal and transcendental constants. Indeed, for �b;p the BBP algorithm is

extraordinarily rapid: the overall bit-complexity to resolve the n-th base-b digit of �b;p is

O(log2 n log log n log log log n);

which can conveniently be thought of as O(n�). By comparison, the complexity for the

BBP scheme applied to fundamental constants such as � and log 2 (in general, the con-

stants falling under the umbrella of Hypothesis A) is O(n1+�). As a speci�c example, in

only 2.8 seconds run time on a modern workstation the authors were able to calculate

binary bits of �2;3, beginning at position one googol (i.e. 10100). The googol-th binary

digit is 0; the �rst ten hexadecimal digits starting at this position are 2205896E7B. In

contrast, C. Percival's recent resolution of the quadrillionth (1015-th) binary bit of � is

14



claimed to be the deepest computation in history for a 1-bit result [34], �nding said bit

to be 0 but at the cost of over 1018 CPU clocks.

The PRNG we have presented takes a more erudite form if we only run through single

mod-pk cycles when the iterate denominator is pk. That would entail a perturbation

r1+�1+�2+���+�k�1 =
1

pk
;

with all other ri = 0. The associated real number in question is then:

�b;p =
X
k�1

1

pkb1+�1(pk�1)=(p�1)
;

and each of these �b;p is provably b-normal. One might wonder why this more complicated

form should be mentioned at all, what with the elegance of the �b;p forms. The answer

is, the PRNG is better, in the usual conventional senses. The discrepancy bound for this

PRNG can generally be lowered below the bound for the �b;p (but only in the overall

constant), except that if b happens to be a primitive root of p, �b;p = �b;p and there is

nothing new.

During this work it occurred to the authors that the uniform (0; 1) generator

yn =
zn
3k
;

where zn is de�ned by the recursion zn = 2zn�1 mod 3k, is of a class (namely, long-period

linear congruential generators) that is widely used in modern computing. One possible

weakness is that the numerator omits multiples of three; such a defect might be uncovered

in spectral tests, for example. The weakness can however be ameliorated to some degree

by modifying the y sequence as follows:

yn =
zn � bzn=3c
2 � 3k�1

;

in this way \contracting" the generator to render a uniformly spaced set of random

values|the working denominator is now the period of the generator. The authors are not

aware of statistical studies on \contracted" PRNGs of this form.

At this point one might look longingly at the b-normality of �b;p and wonder how

diÆcult it is to relax the constraint on summation indices in
P

n2S 1=(nb
n) in order �nally

to resolve logarithmic sums. Some relaxations of the set S � Z+ may be easier than

others. We conjecture that

� =
X 1

p2p
;

where p runs through the set of Artin primes (of which 2 is a primitive root), is 2-normal.

It is a celebrated fact that under the extended Riemann hypothesis (ERH) the Artin-

prime set is in�nite, and in fact|this may be important|has positive density amongst

the primes. We make this conjecture not so much because of statistical evidence, but
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because we hope the fact of 2 being a primitive root for every index p might streamline

any analysis. Moreover, any connection at all between the ERH and the present theory

is automatically interesting.

With Theorem 4.6, we now have normal numbers de�ned with explicit algebra, as

opposed to \arti�cial" constructions. In this light, of some interest is the form appearing

in [25, Theorem 30, pg. 162], where it is proven that

� =
X
n�1

bbff(n)gc
bn

is b-normal for any \completely uniformly distributed" function f , meaning that for every

integer s � 1 the vectors (f(n); f(n+1); : : : f(n+s)) are, as n = 1; 2; 3; : : :, equidistributed
in the unit s-cube. (Korobov also cites a converse, that any b-normal number has such

an expansion with function f .) Moreover, Korobov gives an explicit function

f(x) =
1X
k=0

e�k
5

xk;

for which the number � above is therefore b-normal. Indeed this work is the closest to ours

that we have uncovered in the literature; witness that results of Korobov and Niederreiter

have �gured strongly into our proofs.

It may be possible to extend some of these ideas to handle even the arti�cially con-

structed normal numbers described in Sections 1 and 6.

5. PRNGs leading to density and irrationality proofs

Independent of number theory and special primes, one could ask what is the statistical

behavior of truly random points chosen modulo 1; for example, what are the expected

gaps that work against uniform point density?

In view of De�nition 2.1(4) and Theorem 2.2(11), it behooves us to ponder the expected

gap-maximum for random points: If N random (with uniform distribution) points are

placed in [0; 1), then the probability that the gap-maximumGN exceeds x is known to be

[22]

Prob(GN � x) =
b1=xcX
j=1

 
N

j

!
(�1)j+1(1� jx)N�1

The expectation E of the gap-maximum can be obtained by direct integration of this

distribution formula, to yield:

E(GN ) =
1

N
( (N + 1) + 
)

where  is the standard polygamma function �0=�. Thus for large N we have

E(GN ) =
logN + 
 � 1=2

N
+O(

1

N2
)

�
logN

N
:
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This shows that whereas the mean gap is 1=N , the mean maximum gap is essentially

(logN)=N . In this sense, which remains heuristic with an uncertain implication for our

problem, we expect a high-order cascaded PRNG to have gaps no larger than \about"

(logP )=P where P is the overall period of the PRNG.

It turns out that for very specialized PRNGs we can e�ect rigorous results on the

gap-maximum GN . One such result is as follows:

Theorem 5.1. Let 1 = e1 < e2 < e3 < : : : < ek be a set of pairwise coprime integers.

Consider the PRNG with any starting seed (s1; : : : ; sk):

xd =

�
2d
�

2s1

2e1 � 1
+

2s2

2e2 � 1
: : :

2sk

2ek � 1

��
mod 1:

Then the generated sequence (xd) has period e1e2 � � � ek and for suÆciently large N we

have

GN < 3=2bk=2c:

Proof. Each numerator 2d+si clearly has period ei modulo the respective denominator

2ei � 1, so the period is the given product. The given bound on gaps can be established

by noting �rst that the behavior of the PRNG de�ned by

y(fi) =
2f1 � 1

2e1 � 1
+
2f2 � 1

2e2 � 1
+ � � � +

2fk � 1

2ek � 1
;

as each fi runs over its respective period interval [0; ei� 1], is very similar to the original

generator. In fact, the only di�erence is that this latter, y form has constant o�setP
1=(2ei � 1) so that the maximum gap around the mod 1 circle is the same. Now

consider a point z 2 [0; 1) and attempt construction of a set (fi) such that y(fi) � z, as
follows. Write a binary expansion of z in the (non-standard) form:

z =
X
n=1

1

2bn
;

i.e., the bn denote the positions of the 1 bits of z. Now set fi = ei � bi for i from k down

to k �K + 1 inclusive. Using the following inequality chain for any real 0 < a < b:

a

b
�
1

b
<

a� 1

b� 1
<
a

b
;

it follows that we can �nd a PRNG value such that

jjy(fi) � zjj <

�������
2

2ek�K+1

+
KX
j=1

1

2bk

������ :
Attention to the fact that the ei are strictly increasing leads directly to the upper bound

3=2bk=2c on the maximum gap for the y, and hence the x generator.
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Of course the maximum-gap theorem just exhibited is weaker than the statistical expec-

tation of the maximum gap, roughly (logE)=E where E = e1 � � � ek, but at least we �nally
have a rigorously vanishing gap and therefore, as we shall see, some digit-density, hence

irrationality results.

Though the previous section reveals diÆculties with the PRNG approach, there are

ways to apply these basic ideas to obtain irrationality proofs for certain numbers of the

form

x =
X
i

1

mi2ni
:

for integers mi and ni. A �rst result is based on our rigorous PRNG gap bound, from

Theorem 5.1, as:

Theorem 5.2. Let 1 = e1 < e2 < : : : be a strictly increasing set of integers that are

pairwise coprime. Let (di) be a sequence of integers with the growth property:

dk+1 >
kY
i=1

di +
kY
i=1

ei:

Then the number:

x =
1X
m=1

1

2dm(2em � 1)

=
1

2d1(2e1 � 1)
+

1

2d2(2e2 � 1)
+ : : :

is 2-dense and hence irrational.

Proof: Fix a k, de�ne D =
Q
di; E =

Q
ei, and for 0 � g < E consider the fractional

part of a certain multiple of x:

f2g+Dxg =
kX
i=1

2fi � 1

2ei � 1
+

kX
i=1

1

2ek � 1
+ T;

where fi = 2g+D�di and error term jT j < 1=2ek . By the Chinese remainder theorem,

we can �nd, in the stated range for g, a g such that the PRNG values of Theorem 5.1

are attained. Thus the maximum gap between successive values of the sequence f2nxg
vanishes as k ! 1, so the sequence is dense by Theorem 2.2(11) and desired results

follow.

Of course there should be an alternative means to establish such an irrationality result.

In fact, there are precedents arising from disparate lines of analysis. Consider what we

call the Erd}os{Borwein number: The sum of the reciprocals of all Mersenne numbers,

namely:

E =
1X
n=1

1

2n � 1
:
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This still-mysterious number is known to be irrational, as shown by Erd}os [19] with a clever

number-theoretical argument. More recently, P. Borwein [7] established the irrationality

of more general numbers
P
1=(qn � r) when r 6= 0, using Pade approximant techniques.

Erd}os also once showed that the sum of terms 1=(bn2
2n) is always irrational for any positive

integer sequence (bn). Such binary series with reciprocal terms have indeed been studied

for decades.

The Erd}os approach for the E number can be sketched as follows. It is an attractive

combinatorial exercise to show that

E =
1X
a=1

1X
b=1

1

2ab
=

1X
n=1

d(n)

2n
;

where d(n) is the number of divisors of n (including 1 and n). To paraphrase the Erd}os

method for our present context, consider a relevant fractional part:

f2mEg =

 
d(m+ 1)

2
+
d(m+ 2)

22
+
d(m+ 3)

23
+ : : :

!
mod 1

What Erd}os showed is that one can choose any prescribed number of succesive integers

k+1; k+2; : : : k+K such that their respective divisor counts d(k+1); d(k+2); : : : ; d(k+K)

are respectively divisible by increasing powers 2; 22; 23; : : : ; 2K; and furthermore this can

be done such that the subsequent terms beyond the K-th of the above series for f2kEg
are not too large. In this way Erd}os established that the binary expansion of E has

arbitrarily long strings of zeros. This proves irrationality (one also argues that in�nitely

many 1's appear, but this is not hard). We still do not know, however, whether E is

2-dense. The primary diÆculty is that the Erd}os approach, which hinges on the idea that

if n be divisible by j distinct primes, each to the �rst power, then d(n) is divisible by 2j,

does not obviously generalize to the �nding of arbitrary d values modulo arbitrary powers

of 2. Still, this historical foreshadowing is tantalizing and there may well be a way to

establish that the E number is 2-dense.

As a computational matter, it is of interest that one can also combine the terms of E
to obtain an accelerated series:

E =
1X
m=1

1

2m
2

2m + 1

2m � 1
:

Furthermore, the E number �nds its way into complex analysis and the theory of the

Riemann zeta function. For example, by applying the identity �2(s) =
P

n�1 d(n)=n
s, one

can derive

E =

 � log log 2

log 2
+

1

2�

Z
R

�(s)�2(s)

(log 2)s
dt;

where R is the Riemann critical line s = 1=2 + it. In this sophisticated integral formula

we note the surprise appearance of the celebrated Euler constant 
. Such machinations
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lead one to wonder whether 
 has a place of distinction within the present context. A

possibly relevant series is [4]


 =
1X
k=1

1

2k+1

k�1X
j=0

�
2k�j + j

j

��1
:

If any one of our models is to apply, it would have to take into account the fairly slow

convergence of the j sum for large k. (After k = 1 the j-sum evidently approaches 1

from above.) Still, the explicit presence of binary powers and rational multipliers of said

powers suggests various lines of analysis. In particular, it is not unthinkable that the

j-sum above corresponds to some special dynamical map, in this way bringing the Euler

constant into a more general dynamical model.

It is of interest that a certain PRNG conjecture addresses directly the character of the

expansion of the Erd}os-Borwein number.

Conjecture 5.3 The sequence given by the PRNG de�nition

xd =

 
dX

k=1

2d � 1

2k � 1

!
mod 1 =

 
dX

k=1

2d mod k � 1

2k � 1

!
mod 1:

is equidistributed.

Remark One could also conjecture that the sequence in Conjecture 5.3 is merely dense,

which would lead to 2-density of E.

This conjecture leads immediately, along the lines of our previous theorems pertaining to

specially-constructed PRNGs, to:

Theorem 5.4. The Erd}os-Borwein number E is 2-normal i� Conjecture 5.3 holds.

Proof. For the PRNG of Conjecture 5.3, we have

xd = (2d � 1)

0
@E �X

j>d

1

2j � 1

1
A mod 1;

so that

fxdg = ff2dEg+ f�E � 1 + tdgg;

where td ! 0. Thus f2dEg is equidistributed i� (xn) is, by Theorem 2.2(10).

We believe that at least a weaker, density conjecture should be assailable via the kind

of technique exhibited in Theorem 5.1, whereby one proceeds constructively, establishing

density by forcing the indicated generator to approximate any given value in [0; 1).
P. Borwein has forwarded to us an interesting observation on a possible relation be-

tween the number E and the \prime-tuples" postulates, or the more general Hypothesis

H of Schinzel and Sierpinski. The idea is | and we shall be highly heuristic here | the
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fractional part d(m + 1)=2 + d(m+ 2)=22 + � � � might be quite tractable if, for example,

we have

m+ 1 = p1;

m+ 2 = 2p2;

: : : ;

m+ n = npn;

at least up to some n = N . where the pi > N are all primes that appear in an appropriate

\constellation" that we generally expect to live very far out on the integer line. Note that

in the range of these n terms we have d(m + j) = 2d(j). Now if the tail sum beyond

d(m+N)=2N is somehow suÆciently small, we would have a good approximation

f2mEg � d(1) + d(2)=2 + � � � = 2E:

But this implies in turn that some iterate f2mEg revisits the neighborhood of an earlier

iterate, namely f2Eg. It is not clear where such an argument|especially given the

heuristic aspect|should lead, but it may be possible to prove 2-density (i.e. all possible

�nite bitstrings appear in E) on the basis of the prime k-tuples postulate. That connection
would of course be highly interesting. Along such lines, we do note that a result essentially

of the form: \The sequence (f2mEg) contains a near-miss (in some appropriate sense)

with any given element of (fnEg)" would lead to 2-density of E, because, of course, we
know E is irrational and thus (fnEg) is equidistributed.

6. Special numbers having \nonrandom" digits

This section is a tour of side results in regard to some special numbers. We shall

exhibit numbers that are b-dense but not b-normal, uncountable collections of numbers

that are neither b-dense nor b-normal, and so on. One reason to provide such a tour is

to dispel any belief that, because almost all numbers are absolutely normal, it should

be hard to use algebra (as opposed to arti�cial construction) to \point to" nonnormal

numbers. In fact it is not hard to do so.

First, though, let us revisit some of the arti�cially constructed normal numbers, with

a view to reasons why they are normal. We have mentioned the binary Champernowne,

which can also be written

C2 =
1X
n=1

n

2F (n)

where the indicated exponent is:

F (n) = n+
nX

k=1

blog2 kc:

Note that the growth of the exponent F (n) is slightly more than linear. It turns out that

if such an exponent grows too fast, then normality is ruined. More generally, there is the
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class of Erd}os{Copeland numbers [14], formed by (we remind ourselves that the (�) nota-
tion means digits are concatenated, and here we concatenate the base-b representations)

� = 0:(a1)b(a2)b � � �

where (an) is any increasing integer sequence with an = O(n1+�), any � > 0. An example

of the class is

0:(2)(3)(5)(7)(11)(13)(17) � � �10 ;

where primes are simply concatenated. These numbers are known to be b-normal, and

they all can be written in the form
P
G(n)=bF (n) for appropriate numerator function G

and, again, slowly diverging exponent F . We add in passing that the generalized Mahler

numbers (for any g; h > 1)

Mb(g) = 0:(g0)b(g
1)b(g

2)b � � �

are known at least to be irrational [32], [38], and it would be of interest to establish

perturbation sums in regard to such numbers. Incidentally, it is ironic that the some of

the methods for establishing irrationality of theMb(g) are used by us, below, to establish

nonnormality of certain forms.

We have promised to establish that

� =
X
n�1

n=2n
2

is 2-dense but not 2-normal. Indeed, in the n2-th binary position we have the value n,
and since for suÆciently large n we have n2 � (n � 1)2 > 1 + log2 n, the numerator n at

bit position n2 will not interfere (in the sense of carry) with any other numerator. One

may bury a given �nite binary string in some suÆciently large integer n (we say buried

because a string 0000101, for example, would appear in such as n = 10000101), whence

said string appears in the expansion. Note that the divergence of the exponent n2 is a key
to this argument that � is 2-dense. As for the lack of 2-normality, it is likewise evident

that almost all bits are 0's.

Let is hereby consider faster growing exponents, to establish a more general result,

yielding a class of b-dense numbers none of which are b-normal. We start with a simple

but quite useful lemma.

Lemma 6.1 For polynomials P with nonnegative integer coeÆcients, degP > 0, and for

any integer b > 1, the sequence

(flog
b
P (n)g : n = 1; 2; 3; : : :)

is dense in [0; 1).

Proof. For d = degP , let P (x) = adx
d + : : : + a0. Then log

b
P (n) = log

b
ad +

d(log n)= log b + O(1=n). Since log n = 1 + 1=2 + 1=3 + : : : + 1=n � 
 + O(1=n2) di-

verges with n but by vanishing increments, the sequence (fd(log n)= log bg) and therefore

the desired (flog
b
P (n)g) are both dense by Theorem 2.2(10).
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Now we consider numbers constructed via superposition of terms P (n)=bQ(n), with a

growth condition on P;Q:

Theorem 6.2 For polynomials P;Q with nonnegative integer coeÆcients, degQ > degP >
0, the number

� =
X
n�1

P (n)

bQ(n)

is b-dense but not b-normal.

Proof. The �nal statement about nonnormality is easy: Almost all of the base-b digits
are 0's, because logb P (n) = o(Q(n) � Q(n � 1)). For the density agrument, we shall

show that for any r 2 (0; 1) there exist integers N0 < N1 < : : : and d1; d2; : : : with
Q(Nj�1) < dj < Q(Nj), such that

lim
j!1

fbdj�g = r:

This in turn implies that (fbd�g) : d = 1; 2; : : :g) is dense, hence � is b-dense. Now for

any ascending chain of Ni with N0 suÆciently large, we can assign integers dj according
to

Q(Nj) > dj = Q(Nj) + log
b
r � log

b
P (Nj) + �j > Q(Nj�1)

where �j 2 [0; 1). Then

P (Nj)=b
Q(Nj)�dj = 2�jr:

However, (flog
b
P (n)g) is dense, so we can �nd an ascending Nj-chain such that lim�j = 0.

Since dj < Q(Nj) we have

fbdj�g =

0
@b�jr +X

k>0

P (Nj + k)=bQ(Nj+k)�dj

1
A mod 1

and because the sum vanishes as j !1, it follows that � is b-dense.

Consider the interesting function [27], p. 10:

f(x) =
1X
n=1

bnxc
2n

:

The function f is reminiscent of a degenerate case of a generalized polylogarithm form|

that is why we encountered such a function during our past [3] and present work. Regard-

less of our current connections, the function and its variants have certainly been studied,

especially in regard to continued fractions [16] [17] [27] [8] [29] [5] [1] [17] [9], [10]. If one
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plots the f function over the interval x 2 [0; 1), one sees a brand of \devil's staircase," a

curve with in�nitely many discontinuities, with vertical-step sizes occurring in a fractal

pattern. There are so many other interesting features of f that it is eÆcient to give an-

other collective theorem. Proofs of the harder parts can be found in the aforementioned

references.

Theorem 6.3 (Collection) For the \devil's staircase" function f de�ned above, with

the argument x 2 (0; 1),

1. f is monotone increasing.

2. f is continuous at every irrational x, but discontinuous at every rational x.

3. For rational x = p=q, lowest terms, we have

f(x) =
1

2q � 1
+

1X
m=1

1

2bm=xc

but when x is irrational we have the same formula without the 1=(2q � 1) leading

term (as if to say q!1).

4. For irrational x = [a1; a2; a3; : : :], a simple continued fraction with convergents

(pn=qn), we have:

f(x) = [A1; A2; A3; : : :]:

where the elements An are:

An = 2qn�2
2anqn�1 � 1

2qn�1 � 1
:

Moreover, if (Pn=Qn) denote the convergents to f(x), we have

Qn = 2qn � 1:

5. f(x) is irrational i� x is.

6. If x is irrational then f(x) is transcendental.

7. f(x) is never 2-dense and never 2-normal.

8. The range R = f ([0; 1)) is a null set (measure zero).

9. The density of 1's in the binary expansion of f(x) is x itself; accordingly, f�1, the
inverse function on the range R, is just 1's density.
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Some commentary about this fascinating function f is in order. We see now how f can

be strictly increasing, yet manage to \completely miss" 2-dense (and hence 2-normal)

values: Indeed, the discontinuities of f are dense. The notion that the range R be a null

set is surprising, yet follows immediately from the fact that almost all x have 1's density

equal to 1=2. The beautiful continued fraction result allows extremely rapid computation

of f values. The fraction form is exempli�ed by the following evaluation, where x is the

reciprocal of the golden mean and the Fibonacci numbers are denoted Fi:

f(1=� ) = f

 
2

1 +
p
5

!

= [2F0; 2F1 ; 2F2 ; : : :]

=
1

1 + 1

2 + 1

2 1

4+ 1
8+ :::

;

It is the superexponential growth of the convergents to a typical f(x) that has enabled
transcendency proofs as in Theorem 6.2(6).

An interesting question is whether (or when) a companion function

g(x) =
1X
n=1

fnxg
2n

can attain 2-normal values. Evidently

g(x) = 2x� f(x);

and, given the established nonrandom behavior of the bits of f(x) for any x, one should
be able to establish a correlation between normality of x and normality of g(x). One

reason why this question is interesting is that g is constructed from \random" real values

fnxg (we know these are equidistributed) placed at unique bit positions. Still, we did

look numerically at a speci�c irrational argument, namely

x =
X
n�1

1

2n(n+1)=2

and noted that g(x) almost certainly is not 2-normal. For instance, in the �rst 66,420

binary digits of g(x), the string '010010' occurs 3034 times, while many other length-6

strings do not occur at all.

7. Conclusions and open problems

Finally, we give a sampling of open problems pertaining to this interdisciplinary e�ort:

� We have shown that for (b; p)-PRNG systems, the numbers �b;p are each b-normal.

What about c-normality of such a number for c not a rational power of b?
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� What techniques might allow is to relax the constraint of rapid growth n = pk in our
sums

P
1=(nbn), in order to approach the spectacular goal of resolving the suspected

b-normality of log(b=(b�1))? One promising approach is to analyze discrepancy for

relatively short parts of PRNG cycles. In [25], p. 171, [26] there appear exponential

sum bounds for relatively short indices J into the last cycle. It could be that such

theorems can be used to slow the growth of the summation index n.

� It is clear that the discrepancy bound given in Theorem 4.5, based in turn on the

Korobov{Niederreiter Lemma 4.2, is \overkill," in the sense that we only need show

DN = o(N) to achieve a normality proof. Does this mean that the numbers �b;p
are somehow \especially normal"? For such a question one would perhaps need

extra variance statistics of a normal number; i.e., some measures beyond the \fair

frequency" of digit strings.

� We have obtained rigorous results for PRNGs that either have a certain synchro-

nization, or have extremely small \tails." What techniques would strike at the in-

termediate scenario which, for better or worse, is typical for fundamental constants;

e.g., the constants falling under the umbrella of Hypothesis A?

� With our (b; p)-PRNG systems we have established a countable in�nity of explicit

b-normal numbers. What will it take to exhibit an uncountable, explicit collection?

� What are the properties of \contracted" PRNGs, as exempli�ed in Section 4?

� Does polynomial-time (in log n) resolution of the n-th digit for our �b;p constants

give rise to some kind of \trap-door" function, as is relevant in cryptographic ap-

plications? The idea here is that it is so very easy to �nd a given digit even though

the digits are \random." (As in: Multiplication of n-digit numbers takes polynomial

time, yet factoring into multiples is evidently very much harder.)
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